

NAVFAC Atlantic Biological Resource Services

Contract: N62470-08-D-1008; Task Order: F272

June 25, 2014

Final Interim Measures Work Plan for SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane, Indiana

Prepared for: NAVFAC Midwest 201 Decatur Avenue, Building 1A Great Lakes, IL 60088

Prepared by: Tetra Tech, Inc. 1320 North Courthouse Road, Suite 600 Arlington, VA 22201

FINAL INTERIM MEASURES WORK PLAN SWMU 23 – BATTERY SHOP BUILDING 36

NAVAL SUPPORT ACTIVITY CRANE CRANE, INDIANA

NAVFAC ATLANTIC BIOLOGICAL RESOURCE SERVICES CONTRACT

Submitted to:
Naval Facilities Engineering Command Midwest
201 Decatur Avenue
Building 1A, Code EV
Great Lakes, Illinois 60088

Submitted by:
Tetra Tech, Inc.
1320 North Courthouse Road, Suite 600
Arlington, Virginia 22201

CONTRACT NUMBER N62470-08-D-1008
CONTRACT TASK ORDER F272

JUNE 2014

TABLE OF CONTENTS

SEC	<u> TION</u>		PAGE NO.
ACR	ONYMS		3
1.0	INTRO	DUCTION	1-1
	1.1	PURPOSE AND SCOPE	
	1.2	FACILITY DESCRIPTION AND LAND USE	
	1.3	REGULATORY SUMMARY	
	1.3.1	NSA Crane	
	1.3.2	SWMU 23	
	1.4	REPORT ORGANIZATION	1-6
2.0	SWMU	23 SITE SUMMARY	2-1
	2.1	SITE SUMMARY	
	2.1.1	Topography	2-1
	2.1.2	Surface Drainage	
	2.1.3	Site Geology and Soil	
	2.1.4	Site Hydrogeology	
	2.1.5	Water Supply	2-2
	2.2	PREVIOUS INVESTIGATIONS AND INTERIM MEASURES	2-2
	2.2.1	Initial Assessment Study	2-3
	2.2.2	Preliminary Review/Visual Site Inspection Report	2-3
	2.2.3	Interim Measures Report (2000)	2-4
	2.2.4	RFI Sampling (October/November 2012)	
	2.2.5	Post–RFI Supplemental Soil Sampling Investigations	
	2.3	PROPOSED APPROACH TO ACHIEVE RISK REDUCTION	2-7
3.0	INTERI	IM MEASURES WORK PLAN	3-1
	3.1	DESCRIPTION OF THE INTERIM MEASURES	3-1
	3.2	PERFORMANCE STANDARDS	3-1
	3.3	SEQUENCE OF IMWP IMPLEMENTATION	3-10
	3.4	STORMWATER POLLUTION PREVENTION	3-11
	3.5	OTHER IMWP IMPLEMENTATION REQUIREMENTS	3-12
	3.5.1	Utilities	3-12
	3.5.2	Protection of Natural Resources	3-12
	3.5.3	Traffic Control Plan	
	3.5.4	Contractor Requirements	3-14
	3.6	IMPLEMENTATION	3-14
4.0	EROSI	ON AND SEDIMENT CONTROL PLAN	
	4.1	PURPOSE	
	4.2	EROSION AND SEDIMENT CONTROL REQUIREMENTS	
	4.3	INSPECTION AND MAINTENANCE OF EROSION AND SEDIMENT CO	
	4.4	SITE RESTORATION	
	4.5	RESPONSE PROCEDURES FOR SPILL MITIGATION	4-4
DEE	EDENCES		D 1

Revision: 2 Date: June 2014

Section: Table of Contents and Acronyms

Page 2 of 4

TABLE OF CONTENTS (Continued)

APPENDICES

Α	RFI FIELD REPORT		
В	ANALYTICAL DATA		

C SUPPLEMENTAL CONTRACTOR SPECIFICATIONS

TABLES

NUMBER

- 3-1 Work Assignment Responsibility Chart
- 3-2 Excavation Nodes for SWMU 23 Interim Measures
- 3-3 Summary of SWMU 23 Soil Excavations to Address Lead and PAH Contamination with Excess Risk

FIGURES

NUMBER

1-1 Dase and Site Education Ma	1-1	Base and	Site	Location	Mar
--------------------------------	-----	----------	------	----------	-----

- 1-2 SWMU 23 Site Map
- 2-1 SWMU 23 Soil Sample Locations
- 2-2 SWMU 23 Surface Water and Sediment Sample Locations (RFI)
- 2-3 Soil PAH Data Results as BaP Equivalents and Receptor Risk Categories
- 2-4 Soil Lead Data Results and Receptor Risk Categories
- 3-1 Proposed Soil Excavation Areas
- 3-2 Traffic Control Plan
- 4-1 SWMU 23 Erosion and Sediment Control Devices (Sheet 1 of 2)
- 4-2 SWMU 23 Erosion and Sediment Control Devices (Sheet 2 of 2)

051401/P CTO F272

Revision: 2 Date: June 2014

Section: Table of Contents and Acronyms

Page 3 of 4

ACRONYMS AND ABBREVIATIONS

AASHTO American Association of State Highway and Transportation Officials

amsl above mean sea level

BaP benzo(a)pyrene

BC/BC Big Clifty/Beech Creek bgs below ground surface

CFR Code of Federal Regulations

CLEAN Comprehensive Long-Term Environmental Action Navy

CTO Contract Task Order

cy cubic yard

DRMO Defense Reutilization and Marketing Office

E&S erosion and sediment

EMAC Environmental Multiple Award Contract

ESA Endangered Species Act
ESO Explosives Safety Office
FBL fixed-base laboratory

FTMR Field Task Modification Request
GIS geographic information systems

GRO/ERO/DRO gasoline range organics/extended range organics/diesel range organics

HSWA Hazardous and Solid Waste Amendments

IAS Initial Assessment Study

IDEM Indiana Department of Environmental Management

IM Interim Measure

IMWP Interim Measures Work Plan
LDPE low-density polyethylene

MCG media cleanup goalmg/kg milligrams per kilogramMSDS Material Safety Data Sheet

NACIP Navy Assessment and Control of Installation Pollutants

NAVFAC Naval Facilities Engineering Command

Navy Department of the Navy

NEESA Naval Energy and Environmental Support Activity

NFA no further action

NSA Naval Support Activity

051401/P CTO F272

Revision: 2 Date: June 2014

Section: Table of Contents and Acronyms

Page 4 of 4

NSWC Naval Surface Warfare Center

NWSCC Naval Weapons Support Center Crane

OICC Officer in Charge of Construction

O/WS oil/water separator

PAH polynuclear aromatic hydrocarbon

PCBs polychlorinated biphenyls

ppb parts per billion ppm parts per million

PR/VSI Preliminary Review/Visual Site Inspection

PRG preliminary remediation goal

QA Quality Assurance

RBSL risk-based screening level

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment
RFI RCRA Facility Investigation

SOP Standard Operating Procedure

SSL Soil Screening Level

SWMU Solid Waste Management Unit

TAL Target Analyte List Tetra Tech Tetra Tech, Inc.

TC toxicity characteristic
TOC total organic carbon

TPH total petroleum hydrocarbons

UCL upper confidence limit

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Services

UST underground storage tank
VOCs volatile organic compounds

XRF X-Ray Fluorescence

051401/P CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 1 Page 1 of 6

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to present the Interim Measures Work Plan (IMWP) for the Battery Shop

Building 36, also known as Solid Waste Management Unit (SWMU) 23, at Naval Support Activity (NSA)

Crane located in Crane, Indiana. The IMWP includes a description of the excavation and off-site disposal

of contaminated soil planned within SWMU 23. The draft IMWP was prepared for the United States

Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC) Midwest by Tetra

Tech, Inc. (Tetra Tech) under Contract Task Order (CTO) F272 of the NAVFAC Atlantic Biological

Resource Services Contract Number N62470-08-D-1008.

1.2 FACILITY DESCRIPTION AND LAND USE

NSA Crane is located in the southern portion of Indiana, approximately 75 miles southwest of Indianapolis

and 71 miles northwest of Louisville, Kentucky, immediately east of Crane Village and Burns City

(Figure 1-1). The facility encompasses 62,463 acres (approximately 98 square miles), most of which are

located in the northern portion of Martin County. Smaller portions of NSA Crane are located in Greene

and Lawrence Counties. NSA Crane is located in a rural, sparsely populated area. Most of NSA Crane is

wooded, and the surrounding area is wooded or farmed land.

NSA Crane provides material, technical, and logistical support to the Navy for equipment, shipboard

weapons systems, and nonexpendable ordnance items. In addition, NSA Crane supports the Crane

Army Ammunition Activity with production, renovation, storage, shipment, demilitarization, and disposal of

conventional ammunition.

The rural area communities that surround NSA Crane in south-central Indiana are in a period of transition

from an economic base of agriculture, mining, and quarrying to an economy built on manufacturing and

service industries. The patterns of settlement, population statistics, and median income are similar

throughout the region.

SWMU 23 is located in the north-central portion of NSA Crane and encompasses approximately 6.5 acres

(Figure 1-1). SWMU 23, as presented on Figure 1-2, is bounded on the north and west by heavily

wooded areas with steep hillsides.

051401/P 1-1 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 1 Page 2 of 6

Surface elevations range from approximately 755 feet above mean sea level (amsl) in the area of

Building 36, to approximately 675 feet above amsl in the northwestern area of the Site. Building 36 is the

only building located within SWMU 23, and is located in the southeastern area of the Site (Figure 1-2).

There is no state or local planning within the vicinity of NSA Crane. The only zoning and land use

regulations are found in the municipalities within the region. None of these municipalities are close

enough to have an impact on NSA Crane. None of the areas adjacent to NSA Crane are zoned, and

zoning is not anticipated in the future. SWMU 23 is approximately 2.8 miles southeast of the nearest

NSA Crane property boundary (Figure 1-1). There are no known current or likely future land use or

community actions under consideration or proposed at this time for off-base land near SWMU 23.

SWMU 23 is contained completely within NSA Crane, and likely future land use at areas surrounding the

SWMU 23 site is expected to be limited to military and industrial uses.

1.3 REGULATORY SUMMARY

1.3.1 NSA Crane

Following promulgation of the Resource Conservation and Recovery Act (RCRA) hazardous waste

regulatory program, NSA Crane filed notification and application to operate as a RCRA hazardous waste

treatment, storage, or disposal facility in October 1980. USEPA granted interim status to the NSA Crane

RCRA units, subject to operating requirements and applicable technical standards found in Title 40 of the

Code of Federal Regulations (CFR), Part 265.

Corrective action programs established as part of the 1984 RCRA Hazardous and Solid Waste

Amendments (HSWA) required NSA Crane to address past releases of hazardous waste or hazardous

constituents at SWMUs. Accordingly, NSA Crane submitted a Hazardous Waste Management Report

(HMTC, 1985), and a RCRA Facility Investigation (RFI) was conducted to characterize the potential for

releases of hazardous waste or constituents from approximately 100 SWMUs identified during the RCRA

Facility Assessment (RFA) (A.T. Kearney, 1987).

On December 23, 1989, the United States Environmental Protection Agency (USEPA) issued the federal

portion of the final RCRA Part B Permit for NSA Crane to the Navy. USEPA renewed the permit in 1995.

The Indiana Department of Environmental Management (IDEM) now has responsibility for the Federal

Corrective Action Permit. IDEM renewed the Corrective Action Permit on October 18, 2001.

051401/P 1-2 CTO F272

> Revision: 2 Date: June 2014 Section: 1 Page 3 of 6

1.3.2 <u>SWMU 23</u>

From about 1940 to 1975, approximately 2,000 gallons of battery acid (presumably sulfuric acid) per year were discharged onto the sloped area behind the Battery Shop (Building 36). The specific points of discharge are unknown; therefore, the entire edge of the ridge near SWMU 23, and the downslope areas were considered to be potentially affected by these discharges. In addition, miscellaneous debris and waste oils containing lead, sulfates, and oily water were also discharged in the same area [Naval Energy and Environmental Support Activity (NEESA), 1983]. This debris area was situated north of Building 36 as shown on Figure 1-2, covered an area approximately 400 feet wide and 125 feet long, and extended to the bottom of the ravine. A small intermittent stream is located at the bottom of the ravine. The area is rugged and densely wooded, with rock formations protruding from the slope causing sudden drops in elevation of 12 to 14 feet. The debris was unevenly scattered throughout the Site.

A site reconnaissance was performed by Tetra Tech on July 13, 2011 and involved the visual inspection of the exterior areas of SWMU 23. Building 36 was not entered, and the locations of the oil/water separator (O/WS) and the battery storage area at that time were observed. Photographs 1 and 2 (below) show the exterior of Building 36, and the surrounding pavement on the western side of the building.

Photograph 1: View of rear of Building 36, facing southeast

Date: June 2014 Section: 1 Page 4 of 6

Photograph 2: View of rear of Building 36, facing southwest

To the right of the forklifts shown in the photographs is a steep hillside that is highly vegetated with undergrowth and sizable trees (Photograph 3). Two concrete structures that appear to have been stormwater headwalls were identified along the hill slope west of the building. No significant debris and no stressed vegetation were identified during the visit. Photograph 4 shows one of the two headwalls.

Photograph 3: View of steep hill slope west of Building 36

Date: June 2014 Section: 1 Page 5 of 6

Photograph 4: View of one of the headwalls located along the hill slope west of Building 36

SWMU 23 has been investigated previously. The following is a listing of the investigations and documents relevant to the SWMU 23 - Building 36 Battery Shop:

- Initial Assessment Study (IAS) of Naval Weapons Support Center, Crane, Indiana; NEESA, Port Hueneme, California. May 1983, (NEESA, 1983)
- Preliminary Review/Visual Site Inspection (PR/VSI) Report of Naval Weapons Support Center, Crane,
 Indiana. March 1987, (A. T. Kearney, Inc., 1987)
- Interim Measures Report, SWMU 23/00 Battery Shop, Voluntary Interim Measures, Naval Surface Warfare Center (NSWC) Crane, Crane, Indiana, (Morrison Knudsen, 2000)
- Final Sampling and Analysis Plan, Resource Conservation and Recovery Act Facility Investigation SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane, Crane, Indiana, August, (Tetra Tech, Inc., 2012)
- Field Task Modification Request (FTMR) No. 1 to the Sampling and Analysis Plan, Resource Conservation and Recovery Act Facility Investigation SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane, Crane, Indiana, (Tetra Tech, Inc., 2013a)

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 1 Page 6 of 6

• Draft Resource Conservation and Recovery Act Facility Investigation for SWMU 23 - Battery Shop

Building 36, Naval Support Activity Crane, Crane, Indiana, (Tetra Tech, Inc., 2013b)

• FTMR No. 2 to the Sampling and Analysis Plan, Resource Conservation and Recovery Act Facility

Investigation SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane, Crane, Indiana,

(Tetra Tech Inc., 2013c).

A summary of the environmental investigations and previous Interim Measures (IMs) conducted at

SWMU 23 is provided in Section 2.0.

1.4 REPORT ORGANIZATION

The following highlights the information contained in the remainder of this document:

Section 2.0 summarizes site characteristics, including site description, summary of environmental

investigations conducted at SWMU 23, and nature and extent of contamination.

Section 3.0 presents the IMWP.

Section 4.0 presents erosion and sediment (E&S) control features proposed for the IMWP described

in Section 3.0.

051401/P 1-6 CTO F272

760 150 0 150 Feet			Surface Water Flow Direction Topographic Contour (5-ft)		
DRAWN BY K. MOORE	DATE 08/05/11	TE TETRATECH	CONTRACT NUMBER 3539	CTO NU	
CHECKED BY J. DUCAR	DATE 08/14/13	SITE MAP	APPROVED BY	DATE	
REVISED BY D. COUCH	DATE 08/14/13	SWMU 23 - BATTERY SHOP BUILDING 36 NSA CRANE	APPROVED BY	DATE	
SCALE AS NOTED		CRANE, INDIANA	FIGURE NO.	RE 1-2	REV 0

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 2 Page 1 of 9

2.0 SWMU 23 SITE SUMMARY

2.1 SITE SUMMARY

A general description of SWMU 23 is provided in Section 1.0. The following subsections describe the

physical conditions of areas to be addressed in the IMWP. These descriptions are excerpts from the

SWMU 23 Draft RFI Report (Tetra Tech, 2013b).

2.1.1 <u>Topography</u>

The terrain is predominantly rolling with moderately incised stream valleys throughout, and occasional flat

areas in the central and northern portions of NSA Crane. The elevations across NSA Crane range from

about 500 feet amsl to about 850 feet amsl. Topographic relief in the Crawford Uplands generally ranges

from 100 to 350 feet. Greater relief exists in the eastern part of NSA Crane near the Chester Escarpment

(Murphy and Wade, 1998a, 1998b).

SWMU 23 (Battery Shop Building 36) is located in the north-central portion of NSA Crane, and

encompasses approximately 6.5 acres (Figure 1-2). The operational portion of SWMU 23 is located

within a relatively flat area at the top of a steep slope that is bounded on the north and west by heavily

wooded areas with steep hillsides. Surface elevations range from approximately 755 feet above amsl in

the area of Building 36 to approximately 675 feet amsl in the northwestern area of the Site.

2.1.2 <u>Surface Drainage</u>

The surface drainage at NSA Crane has formed a dense, dendritic pattern throughout the installation.

Most of the major streams flow in a general southward or southwestward direction. Seven primary creeks

in five drainage basins carry surface water off the installation, where they eventually drain into the East

Fork of the White River, and then to the Wabash River to the southwest.

Surface water drainageways are located along the north, west, and southwest periphery of SWMU 23

(Figure 1-2). These perennial drainageways converge and flow to the north-northwest, eventually

discharging to Lake Greenwood, located approximately 3,200 feet to the north.

051401/P 2-1 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 2

Page 2 of 9

2.1.3 <u>Site Geology and Soil</u>

The unconsolidated overburden deposits at NSA Crane generally consist of two types: Quaternary and

Pleistocene age alluvial and colluvial deposits near the floodplains of primary streams, and

unconsolidated residual soils and loess on the sides and tops of ridges. Residual soils at NSA Crane

were derived from the underlying sedimentary rocks of the Lower Pennsylvanian Raccoon Creek Group,

and the Upper Mississippian Stephensport and West Baden Groups. These soils consist of clay, silt,

sand, and fragmented and/or partially weathered bedrock. The residual soils developed on the ridge tops

and upper side slopes of the ridges were derived from the weathering of Pennsylvanian strata.

Based on the classification scheme developed in the base-wide background soil study (Tetra Tech,

2001), the soils encountered at SWMU 23 fall into two different soil groups. The surface soils [0 to 2 feet

below ground surface (bgs)] all belong to Soil Group 3 (Alluvial, Mississippian, and Pennsylvanian). The

subsurface soils (2 to 10 feet bgs) belong to Soil Group 8 (Pennsylvanian subsurface Clay and Silt).

2.1.4 Site Hydrogeology

The bedrock underlying NSA Crane is Pennsylvanian and Mississippian sandstones, limestones, and

shales overlain by Quaternary age deposits. The SWMU 23 area is mapped as being underlain by the

Mansfield formation of the Raccoon Group. The Mansfield formation consists of alternating beds of dark

shale, sandstone, mudstone, siltstone, and discontinuous coal units. Depth to groundwater at SWMU 23

is unknown, but is expected to be present in the bedrock at less than 20 feet bgs, based on other site

investigations at NSA Crane. According to the conceptual hydrologic model for SWMU 23, groundwater

flow at the site is presumed to flow to the west and north based on local topography, with groundwater

flow most likely discharging north to Lake Greenwood.

2.1.5 Water Supply

Groundwater at SWMU 23 is not currently used, and there are no future use plans for groundwater. Lake

Greenwood, an 800-acre, man-made, spring-fed lake in the northern portion of NSA Crane (Figure 1-1) is

the main source of drinking water at NSA Crane and is expected to remain as such in the future. Lake

Greenwood is located approximately 3,200 feet north of SWMU 23.

2.2 PREVIOUS INVESTIGATIONS AND INTERIM MEASURES

An interim measure and several investigations have been conducted at SWMU 23, and are summarized

below.

051401/P 2-2 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 2

Page 3 of 9

2.2.1 <u>Initial Assessment Study</u>

The IAS, conducted in 1983 by NEESA (NEESA, 1983), identified the Battery Shop as Site 1. The IAS

stated that Battery Shop personnel performed maintenance operations on electric vehicles (primarily

forklifts) for use at NSA Crane. Approximately 150 gallons per month (approximately 2,000 gallons per

year) of spent battery acid, from 1940 to 1975, were discharged onto a hillside behind the Battery Shop

(Building 36). Based on the nature of this operation, it is assumed the battery acid was sulfuric acid.

After 1975, the practice was to neutralize the acid in a tank, then discharge the neutralized liquid into the

industrial sewer system. Visual inspection of the disposal area at the time of the study identified

approximately ten 10-gallon barrels and 50 5-gallon barrels at the base of the hill. The report did not

state whether the barrels were empty, nor did it identify the nature of actual or potential contents.

Wastewater containing oil originating from the maintenance of non-electric forklifts was processed

through an oil/water separator adjacent to the building. Approximately 50 gallons per month of oil was

removed from the separator for disposal/recycling.

The IAS indicated that one small solvent tank of unknown size and type of solvent stored was located in

Building 36 at the time of the report; the IAS Report also stated that prior to 1980, 10 to 20 gallons of

solvent were drained out of the tank twice per year and dumped down the hillside behind the building.

The specific areas of dumping are unknown.

Surface water drainage from the hillside flows into surface water pathways, which discharge to Lake

Greenwood, located approximately 3,200 feet to the north. The report stated there was a potential for

lead salts to migrate to Lake Greenwood. Lake Greenwood is the local drinking water source for NSA

Crane; therefore, the report recommended that surface soil and sediment be sampled and evaluated for

lead.

2.2.2 Preliminary Review/Visual Site Inspection Report

The PR/VSI Report (A.T. Kearney, 1987) identified the "Battery Shop Dump" as an area of concern. The

report indicated that this unit consisted of an open hillside north of the Battery Shop (Building 36) with no

containment or release control provisions. Spent battery acid and waste oil from forklift servicing were

disposed of by allowing them to flow down the hill and into a stream which flows to Lake Greenwood

(NSA Crane's drinking water supply reservoir). The specific areas of disposal are unknown; therefore, the

entire edge of the ridge near SWMU 23 was considered to be the disposal area. The wastes disposed in

051401/P 2-3 CTO F272

Revision: 2 Date: June 2014 Section: 2 Page 4 of 9

the unit were spent battery acid containing lead and sulfates, and waste oil and oily water from forklift servicing within Building 36. A sump was installed in 1980 to replace the open dumping of acids.

The PR/VSI Report concluded that the potential for release to soil/groundwater in the past was high as a result of the open dumping of liquid waste on a hillside. However, the Navy Assessment and Control of Installation Pollutants (NACIP) study reported that no significant levels of lead (i.e., associated with battery acid) have been found in the soil of the unit. The potential for release to surface water in the past was also high as a result of the open dumping of liquid wastes on a hillside whose runoff flows into Lake Greenwood. However, the NACIP study reported that no significant levels of lead have been found in the lake water. The potential for release to air in the past was low because of the nature of the wastes disposed, and because the mechanism of disposal involved releases of liquids and solids to surface soil. The potential for generation of subsurface gas is low because of the open nature of the unit and the wastes managed. The PR/VSI Report recommended soil should be sampled on the hillside to verify the conclusions of the NACIP report.

2.2.3 Interim Measures Report (2000)

A voluntary IM action was conducted at SWMU 23 in February 1996, and documented in the IM Report, SWMU 23/00 Battery Shop (Morrison Knudsen, 2000). This IM was conducted to remove and dispose of surface debris present in the "Battery Shop Dump" on the hillside north of Building 36. Figure 2-1 shows the location of the IM debris removal area. The type and condition of surface debris was primarily of a construction or domestic waste nature; and included concrete, reinforcement bar (rebar), metal cans, Materials were removed using both manual and drums, chairs, tires, and battery components. mechanical methods. A track backhoe was used to clear a path to lower a skid-mounted box down the slope, and to extract large pieces of concrete or concrete-encased material. The majority of the surface debris was removed by hand and placed into the box. Soil was removed from the materials and left in place prior to placing the debris into the box. The box was then pulled up the slope and the debris was transferred to a roll-off box for transport off-site to Rumpke Landfill in Bloomington, Indiana for disposal. Approximately 4.5 tons of debris (including construction debris such as large sections of preformed concrete slabs, drums, cans, filters, and tires) were removed from the Site. A metal detector was used to identify debris covered by leaves or buried at a shallow depth in the area from which debris was removed. There was no soil removed from the site. After all debris was removed from the area, no backfill was placed. The contour of the area was essentially undisturbed.

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

> Section: 2 Page 5 of 9

Following the completion of debris removal, confirmation sampling was performed. Eight soil and two

surface water samples were collected and analyzed by an approved off-site laboratory. The confirmation

samples were collected on February 22, 1996. The samples were analyzed for Appendix IX parameters.

The IM Cleanup Levels for soil analysis used for the site were taken from USEPA Memo RCRA

Corrective Action Guidance: Human Data Quality Levels for RFI Projects by Karl E. Bremer, dated

June 18, 1994, and were used as the interim cleanup levels in the absence of site-specific health risk-

based levels. The soil samples contained concentrations of various metals at levels greater than the

interim cleanup levels. One sample, 23/00-011, also contained the organophosphorus pesticide methyl

parathion at a concentration 1 part per billion (ppb), which was greater than the associated IM cleanup

level. The soil samples did not contain any other target analytes greater than the IM cleanup levels. The

two surface water samples (23/00-012 and 23/00-014) did not show any exceedances of an interim

cleanup level.

The report concluded that although the goal of the interim remedial action was met (i.e., removal of

debris), confirmation sample analytical results showed that several contaminants were present in the soil

at SWMU 23 at concentrations greater than the generic, interim cleanup levels. Therefore, it was

recommended that an RFI be performed to determine and delineate the extent of contamination in the soil

at the Site.

2.2.4 RFI Sampling (October/November 2012)

Soil Sampling

Soil samples were collected downgradient from potential source areas [i.e., O/WS and former suspected

underground storage tank (UST)], along the hillside downgradient of the building, and in the area where

dumping historically occurred.

Twenty-three surface soil samples (from borings 23SB001 through 23SB023) and 12 subsurface soil

samples (from borings 23SB001 through 23SB006 and 23SB024 through 23SB026) were collected (see

Figure 2-1). All surface soil samples were submitted to the fixed-base laboratory (FBL) for analysis of:

volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH) gasoline range

organics/extended range organics/diesel range organics (GRO/ERO/DRO), polycyclic aromatic

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, sulfate, and pH. All subsurface soil

samples were submitted to the FBL for analysis of: VOCs, TPH GRO/ERO/DRO, PAHs, and metals.

051401/P 2-5 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 2

Page 6 of 9

All soil sample locations are presented on Figure 2-1.

A geophysical investigation was conducted to determine whether the suspect UST was present. The

results showed no evidence that the tank was till present.

Drainageway Surface Water and Sediment Sampling

Six surface water samples (23SW001 through 23SW006) and six collocated sediment samples (23SD001

through 23SD006) were collected from six discrete locations within surface water drainageways at

SWMU 23. All sediment samples were collected at a depth of 0 to 0.5 foot bgs. No samples were

collected from location 23SW/SD007 because of the lack of sufficient sediment volume (bedrock was at

the surface), and surface water was not present.

The surface water samples were submitted to the FBL for TPH GRO/ERO/DRO, hardness, and total and

dissolved metals analyses. The majority of the sediment samples were submitted to the FBL for VOCs,

PAHs, PCBs, metals, and total organic carbon (TOC) analysis. Sample 23SD009-0006, collected in May

2013, was only analyzed for VOCs, PAHs, and metals.

All sediment and surface water sample locations collected during the RFI are presented on Figure 2-2.

Oil/Water Separator Sediment Sampling

One sediment sample (23SD008-0006) was collected from the base of the O/WS (see Figure 2-2). The

sample was collected at a depth of approximately 0 to 4 inches below the top of the residue at the base of

the structure. The structure is approximately 5 feet deep.

This sediment sample was submitted to the FBL for analysis of VOCs, TPH GRO/ERO/DRO, PAHs,

PCBs, metals, and TOC.

2.2.5 <u>Post–RFI Supplemental Soil Sampling Investigations</u>

Based on the laboratory results from the October/November 2012 field event, supplemental surface and

subsurface soil samples were collected in May 2013 as proposed in the FTMR No.1 to determine the

horizontal extent of PAHs and metals (i.e., Pb) contamination at SWMU 23. Eleven surface soil samples

and eight subsurface soil samples were collected from boring locations 23SB027 through 23SB037. All

samples collected from 23SB027 through 23SB032 were submitted to the FBL for PAH analysis only.

051401/P 2-6 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014 Section: 2

Page 7 of 9

The samples collected from 23SB033 through 23SB037 were submitted to the FBL for metals (i.e., Pb)

analysis only.

Additional supplemental soil sampling was required to further refine the areas of contamination for potential excavation; therefore, supplemental surface and subsurface soil samples were collected in March 2014 as planned in the FTMR No. 2 to improve the delineation of the vertical and horizontal extent of PAHs and metals (lead) contamination at SWMU 23. Sixty-four soil samples were collected from boring locations 23SB002, 23SB003, and 23SB038 through 23SB075. The subsurface soil samples collected from former locations 23SB002 and 23SB003 were to determine the vertical extent of the PAH contamination at those locations; samples collected from new boring locations 23SB048 through 23SB075 were to determine the extent of the PAH contamination; and samples collected from new boring locations 23SB038 through 23SB047 were to delineate the lead contamination at the site. An additional seven samples were collected in April 2014 from six locations (23SB076 through 23SB081) to delineate lead contamination around former sample location 23SB010. Discrete soil samples were collected from four different soil textures encountered at location 23SB072 and analyzed by a geotechnical laboratory to provide site-specific soil density data for SWMU 23. The density data for SWMU 23 are described in more detail in Appendix A of this IMWP.

All soil sample locations from the post-RFI sampling events are presented on Figure 2-1. Figure 2-3 presents the comprehensive sampling results of the soil PAH concentrations in benzo(a)pyrene (BaP) equivalents concentrations for the samples collected at SWMU 23. Figure 2-4 presents the comprehensive results of the soil lead concentrations detected in soil samples collected at SWMU 23. Appendix A described the field program for the collection of the RFI and post-RFI delineation samples. Appendix B contains the analytical results for the RFI and post-RFI samples collected at SWMU 23.

2.3 PROPOSED APPROACH TO ACHIEVE RISK REDUCTION

PAH Risk Reduction and Mitigation in SWMU 23 Soil

This section presents the steps necessary to reduce human health and ecological risk to acceptable levels. PAH concentrations in soil at SWMU 23 present human health risk in excess of 1 X 10⁻⁴. Total risk is presented as BaP equivalents concentration, and an acceptable risk is within the range of 1 X 10⁻⁶ to 1 X 10⁻⁴, or 0.015 to 1.5 milligrams per kilogram (mg/kg) BaP equivalents concentration. The media cleanup goals (MCGs) for PAHs are reduction of contaminant concentrations so that the risk from residual contamination in surface and subsurface soil is within the acceptable risk range for residential receptors.

Revision: 2 Date: June 2014 Section: 2

Section: 2 Page 8 of 9

The discrete areas where PAH contamination has been delineated in soil are located in different zones within SWMU 23.

The risk-based screening level (RBSL) of 1 X 10⁻⁴ for residential human health exposure is used as the point of departure for evaluating total cancer risks in this assessment. A RBSL corresponding to a risk level of 1 X 10⁻⁴, or 1.5 mg/kg BaP equivalents concentration, was used to evaluate the total BaP equivalent concentrations for this project. Based on the collected soil samples from the SWMU 23 soils on the slope west of Building 36 and the BaP equivalents concentrations calculated for those soil samples, there is PAH contamination present within the SWMU 23 footprint above the human health screening level of 0.015 mg/kg BaP equivalents. Because the primary screening level of 0.015 mg/kg BaP equivalents for the human health screening level of 1 X 10⁻⁶ is particularly low (15 parts per billion), multiple soil samples collected from SWMU 23 contained detectable levels of PAHs which exceeded this screening level established for the human health risk level of 1 X 10⁻⁶.

However, if all or most of the soil areas with BaP equivalents concentrations greater than the screening level established for the human health risk level of 1 X 10⁻⁵ (0.15 mg/kg) were removed from the former disposal areas, then the majority of the remaining soil areas should fall somewhere between the projected residential cancer risk levels of 1 X 10⁻⁶ (0.015 mg/kg) and 1 X 10⁻⁵ (0.15 mg/kg) for BaP equivalents in the remaining site soil as shown in the table below.

BaP Equivalents Concentrations in Soil Samples	Total Residential Cancer Risk Levels
< 0.015 mg/kg	< 1 X10 ⁻⁶
0.015 mg/kg to 0.15 mg/kg	1 X 10 ⁻⁶ to 1 X 10 ⁻⁵
0.15 mg/kg to 1.5 mg/kg	1 X 10 ⁻⁵ to 1 X 10 ⁻⁴
> 1.5 mg/kg	> 1 X 10 ⁻⁴

Based on this approach, soil areas with higher BaP equivalents concentrations and corresponding higher total residential cancer risks should be targeted for excavation and removal. Removal of soil with higher BaP equivalents concentrations would reduce the overall residential cancer risk in soil to levels between the residential cancer risk levels of 1 X 10⁻⁶ (0.015 mg/kg) and 1 X 10⁻⁵ (0.15 mg/kg).

Lead Risk Reduction and Mitigation in SWMU 23 Soil

A goal of the SWMU 23 IMWP is to reduce human health and ecological risks from soil lead concentrations to more acceptable levels. The media cleanup standard (MCS) for lead in soil at

Revision: 2 Date: June 2014 Section: 2 Page 9 of 9

SWMU 23 is 400 mg/kg. This MCS will be used as a threshold level to guide the removal of lead-contaminated soil at SWMU 23. The focused removal of lead-contaminated soils in excess of the MCS will reduce human health risk to acceptable levels and result in acceptable ecological risk.

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 3 Page 1 of 14

3.0 INTERIM MEASURES WORK PLAN

This section describes the interim measures for removal of contaminated soil at SWMU 23. The interim

measures for SWMU 23 include the excavation and off-site disposal of soil containing PAH compounds

(expressed as BaP equivalents) and lead at concentrations above specific risk levels, in order to reduce

average site-wide risks. This IMWP describes the limits and method of removal and off-site disposal of

contaminated soil.

3.1 DESCRIPTION OF THE INTERIM MEASURES

This IMWP specifies the removal of contaminated soil from six general areas at SWMU 23 that contain

either PAH compounds derived from waste residues, or lead derived from previous battery handling and

battery management operations performed at Building 36. In addition, this IMWP specifies restoration of

these general excavation areas. Removal of soils from these areas will reduce the site-wide exposure

risk for PAHs and lead to levels allowing unrestricted use. The volumes presented for excavation are in-

place estimates. It is anticipated that these volumes will increase after the soil is excavated and left in an

unconsolidated state prior to loading and off-site disposal.

A work assignment responsibility chart (Table 3-1) identifies the responsibilities that the Contractor, NSA

Crane, and Tetra Tech will have in the IMWP implementation.

3.2 PERFORMANCE STANDARDS

The following is a summary of the six excavation areas identified on Figure 3-1 and the associated

performance standards for each excavation area. Excavation nodes are included on Figure 3-1, and the

excavation node coordinates for the designated limits of excavation are listed in Table 3-2. Performance

standards for the IMWP are presented in the following sections.

Soil Excavation/Removal

Soil in the three PAH-contaminated soil areas (PAH Excavation Areas 1, 2, and 3) and the soil in the

three elevated soil-lead areas (Lead Excavation Areas 1, 2, and 3) will be excavated independently.

There is some minor excavation area overlap between the northernmost PAH area (PAH Excavation Area

1) and the westernmost lead area (Lead Excavation Area 1). The maximum lead detection in Lead

Excavation Area 1 (soil collected from the headwall discharge point) is below 700 ppm lead. The

Environmental Multiple Award Contract (EMAC) contractor will be responsible for collecting soil samples,

051401/P 3-1 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 3 Page 2 of 14

as necessary, to characterize soil for treatment, storage, and offsite disposal. Unless otherwise stated for

specific excavation areas, direct loading of the trucks from the excavation is the preferred approach.

When there is a need for stabilization or treatment of lead in soil, the contractor may elect to create a

treatment pile to support that process, in accordance with the requirements of their NAVFAC-approved

work plan (described Appendix C),

The soil-lead concentrations upslope and behind the concrete headwall in Lead Excavation Area 1 in the

overlap area are known to be less than 200 ppm lead; therefore, the overlap soil may be managed as soil

containing elevated PAH concentrations (as BaP equivalents) with the excavated materials from PAH

Excavation Area 1, without a significant concern for the soil being considered hazardous because of lead

contamination (Figure 3-1). The remaining soil in the Lead Excavation Area 1 (that is not part of the PAH

Excavation Area 1) will be excavated and managed to address the lead contamination, and the EMAC

contractor will characterize that soil to verify selection of an appropriate trucking company and an off-site

disposal facility (hazardous versus non-hazardous).

PAH Excavation Areas

The three excavation areas planned to address elevated soil PAH concentrations at SWMU 23

The times excavation areas planned to address elevated son FATT concentrations at SWING 25

collectively cover approximately 0.14 acres (5,898 square feet). The approximate soil volumes to be excavated to address excess soil PAH risks at SWMU 23 were determined by multiplying the total

excavation area of all three PAH-contaminated soil areas [as estimated by the geographic information

systems (GIS) data], by the average required depth of excavation for each area in feet (the vertical soil

eyerene (e.e, analy, eyere are age required aspirate executation for each area in rect (in terms as each

removal limit for each area). The soil depths designated for excavation to address excess soil PAH risks

at SWMU 23 in the three areas, as shown on Figure 3-1, range from two to four feet below ground surface (or to top of bedrock, whichever is encountered first). The estimated total soil volume targeted for

excavation, removal, and off-site disposal from the three PAH areas (Figure 3-1) is approximately

574 cubic yards (cy) (Table 3-3).

The SWMU 23 IMWP for the three PAH excavation areas consists of the following major soil excavation

components as shown in Figure 3-1:

• PAH Excavation Area 1. The area of soil to be removed from PAH Excavation Area 1 covers

approximately 1,849 square feet (Figure 3-1). This discrete soil area is designated for excavation

down to a depth of 4 feet (or to the top of bedrock, whichever is encountered first) to address the "hot

spot" BaP equivalent concentrations of 2.19 mg/kg (surface to two feet bgs) and 20.796 mg/kg (two to

four feet bgs) at location 23SB004. The deeper (four to six feet beg) soil sample had a BaP

051401/P 3-2 CTO F272

SWMU 23 Interim Measures Work Plan Revision: 2

> Date: June 2014 Section: 3 Page 3 of 14

equivalent concentration of less than 0.15 mg/kg. The estimated volume of PAH-contaminated soil to

be removed is 274 cy, which will weigh an estimated 448 tons, as presented in Table 3-3.

PAH Excavation Area 2. The area of soil to be removed from PAH Excavation Area 2 covers

approximately 1,684 square feet (Figure 3-1). This discrete soil area is designated for excavation

down to a depth of 2 feet to address two "hot spot" BaP equivalents concentrations: 4.6 mg/kg at

sample location 23SB003, and 3.65 mg/kg at sample location 23SB071. The estimated volume of

PAH-contaminated soil to be removed is 125 cy, which will weigh an estimated 204 tons, as

presented in Table 3-3.

• PAH Excavation Area 3. The area of soil to be removed from PAH Excavation Area 3 covers

approximately 2,365 square feet (Figure 3-1). This discrete soil area is designated for excavation

down to a depth of 2 feet below ground surface to address three "hot spot" BaP equivalents

concentrations: 3.82 mg/kg at sample location 23SB002, 6.8 mg/kg at sample location 23SB065, and

30.9 mg/kg at sample location 23SB068. The estimated volume of PAH-contaminated soil to be

removed is 175 cy, which will weigh an estimated 287 tons, as presented in Table 3-3.

Lead Excavation Areas

The three primary excavation areas planned to address elevated soil lead concentrations at SWMU 23

cover approximately 0.16 acres (6,939 square feet) (Figure 3-1). The approximate soil volumes to be

excavated were determined by multiplying the total excavation area of all lead-contaminated soil (as

estimated by GIS data), by the average required depth of excavation for each area in feet. The EMAC

contractor will be responsible for proper management of the lead-contaminated soil from each of the three

areas. If the lead-contaminated soils are carefully excavated and segregated, then the EMAC contractor

could manage, transport, and dispose a portion of the soils with lower lead concentrations as non-

hazardous waste; and higher concentration lead-contaminated soil could be managed, transported and

disposed as hazardous waste. The EMAC contractor could choose to stabilize the soil while still onsite

and prior to transportation, so that the stabilized soil would pass the toxicity characteristic leaching

procedure (TCLP) test for lead and be managed as non-hazardous waste.

The typical depth of lead-contaminated soil designated for excavation in the three primary excavation

areas, as shown on Figure 3-1, is approximately 2 feet. However, deeper soil lead contamination was

observed in samples collected from boring location 23SB085, so Lead Excavation Area 2 was further

subdivided into Subarea 2A (on the west) and Subarea 2B (on the east). The lead contamination in Lead

Excavation Subarea 2B appears to be confined to the top two feet of soil. The proposed excavation

051401/P 3-3 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014 Section: 3

Page 4 of 14

depth for Lead Excavation Subarea 2A is six feet, with a need for soil confirmation sampling on the

excavation floor to verify that the soil at the base of the excavation meets the residential MCS for lead

(400 mg/kg). The estimated total soil volume targeted for excavation, removal, and off-site disposal from

the three lead areas (Lead Excavation Areas 1, 2, and 3) is approximately 983 cy (Table 3-3).

The SWMU 23 IMWP for the three lead excavation areas consists of the following major soil excavation

components to excavate and remove detected soil lead concentrations greater than 400 mg/kg in the

surface soil, as shown in Figure 3-1:

Lead Excavation Area 1. The area of soil to be removed from Lead Excavation Area 1 covers

approximately 208 square feet (Figure 3-1). This discrete soil area is designated for excavation of the

soil down to a depth of 2 feet to address one "hot spot" soil lead concentration of 691 mg/kg at

sample location 23SB010. This soil lead hot spot is also located on the excavation perimeter for PAH

Excavation Area 1; therefore, only the portion of Lead Excavation Area 1 outside the footprint of PAH

Excavation Area 1 will be excavated to address excess lead risk. The estimated volume of lead-

contaminated soil to be removed is 15 cy, which will weigh an estimated 25 tons, as presented in

Table 3-3.

• Lead Excavation Subarea 2A. The area of soil to be removed from Lead Excavation Subarea 2A

covers approximately 3,169 square feet (Figure 3-1). This discrete soil subarea is designated for

excavation down to an average depth of 6 feet to address four identified "hot spot" soil lead

concentrations: 4,640 mg/kg at sample location 23SB014, 1,000 mg/kg at sample location 23SB043,

700 mg/kg at sample location 23SB044, and a series of elevated soil lead detections at 23SB085 that

ranged from 490 mg/kg (2-4 feet bgs) to 910mg/kg (surface to 2 feet bgs). The sample collected at

23SB085 from 4 to 6 feet bgs was also contaminated with 690 mg/kg soil lead. Confirmation soil lead

sampling is recommended for the floor of Subarea 2A to confirm adequate risk reduction has been

accomplished. The estimated volume of lead-contaminated soil to be removed is 704 cy, which will

weigh an estimated 1,136 tons, as presented in Table 3-3.

Lead Excavation Subarea 2B. The area of soil to be removed from Lead Excavation Subarea 2B

covers approximately 2,972 square feet (Figure 3-1). This discrete soil subarea is designated for

excavation down to a depth of 2 feet to address three identified "hot spot" soil lead concentrations in

surface soil: 710 mg/kg at sample location 23SB041, 430 mg/kg at sample location 23SB084, and

4,800 mg/kg at sample location 23SB087. The estimated volume of lead-contaminated soil to be

removed is 220 cy, which will weigh an estimated 355 tons, as presented in Table 3-3.

051401/P 3-4 CTO F272

Revision: 2 Date: June 2014

Section: 3 Page 5 of 14

• Lead Excavation Area 3. The area of soil to be removed from Lead Excavation Area 3 covers approximately 590 square feet (Figure 3-1). This discrete soil area is designated for excavation of the

soil down to a depth of 2 feet to address a single identified "hot spot" soil lead concentration of

1,920 mg/kg at sample location 23SB017. The estimated volume of lead-contaminated soil to be

removed is 44 cy, which will weigh an estimated 71 tons, as presented in Table 3-3.

SWMU 23 - SOIL EXCAVATION / REMOVAL SUMMARY

Soil Excavation Area	Proposed Excavation Depth (feet bgs)	Approximate Soil Volume (cy)	Approximate Soil Mass (tons)
PAH Excavation Area 1	4	274	448
PAH Excavation Area 2	2	125	204
PAH Excavation Area 3	2	175	287
Lead Excavation Area 1	2	15	25
Lead Excavation Area 2A	6	704	1,136
Lead Excavation Area 2B	2	220	355
Lead Excavation Area 3	2	44	71

See Table 3-3 for more detailed information

In the event that the Contractor spills excavated soil on an uncontaminated area, the Contractor will be responsible for removing the contaminated soil along with any impacted surface soil, verifying that all contaminated materials have been removed, and disposing of that material at their own expense.

The Contractor should describe the process for transporting excavated soil in the Contractor's Work Plan (see Appendix C).

Soil Erosion Control

Soil that accumulates in E&S control devices (see Section 4.0) prior to backfilling of the excavations will be disposed off-site along with the contaminated soil. Following backfilling of the excavation, soil that accumulates in the E&S control devices will be spread across the disturbed ground surface of the excavation.

Dewatering

The EMAC Contractor will make every effort to prevent the need to dewater excavated soil, and to prevent the accumulation of water within excavations. Open excavations will be kept to a minimum. To avoid the generation of contaminated water inside active excavations, the contractor should not excavate during heavy rain events, and should design their soil excavations to minimize the collection of

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 3

Page 6 of 14

precipitation inside excavated areas. It is anticipated that the only material that will require dewatering

might be soil that is excavated soon after a heavy precipitation event (a precipitation event that results in

the addition of excess water volume [and weight] to the soil and will require that the excavated soil be

dewatered prior to transportation for off-site disposal). Otherwise, there is no anticipated need for soil

dewatering. When necessary, the excavated soil will be placed on a dewatering pad at a lift thickness no

greater than three feet, and allowed to drain by gravity to be collected within the dewatering pad.

Following dewatering, the Contractor will collect the required disposal characterization samples, and will

mix the soil to promote additional dewatering. It is estimated that following the second day of dewatering,

the moisture content of the soil will have been sufficiently reduced and the material will not require the

addition of an absorbent agent in order to be made suitable for transportation and disposal. At the

conclusion of the field effort, if there is accumulated water at the dewatering pad, then the water will be

sampled for characterization to ensure proper management for off-site disposal.

Sampling and Analysis

At the completion of this IM and following removal of the support facilities (e.g., dewatering pad,

decontamination pad, and material storage area, etc.), support area verification samples will be collected

by Tetra Tech from the surface soil below the decontamination pad, material storage area, and

dewatering pad (if these items are installed). If it is determined that the lining system under any of the

support facilities failed during implementation of this IM, potentially resulting in the contamination of the

soil below the support facilities, the Contractor will be required to remove that contamination at their own

expense. The EMAC has the option of pre-installation sampling of surface soils.

Disposal

Soil designated for excavation will be sampled by the Contractor for waste disposal characterization

purposes in accordance with the waste disposal facility requirements, using the methods required by the

NAVFAC-approved waste disposal facility. The Contractor is responsible for satisfying all disposal

requirements of the selected disposal facility. Table 3-3 presents the quantities of soil to be excavated

from each area.

The Contractor will be responsible for verifying the classification of off-site disposal material

(e.g., disposal as non-hazardous material) by conducting characterization sampling and analysis, and

satisfying the waste disposal facility requirements.

051401/P 3-6 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 3 Page 7 of 14

Backfilling

Immediately following excavation of an individual area of contaminated soil, the excavated area will be

backfilled, compacted, and regraded to the level of surrounding grades (Figure 1-2). An exception to the

immediate backfilling procedure will be Lead Area 2A which requires confirmation sampling. The

excavation for Lead Area 2A should be managed to permit it to remain open for up to five days as the

laboratory analyzes the confirmation samples. This could be done via the use of a large single piece of

liner (e. g., visqueen) or multiple pieces of liner (e. g., biodegradable filter fabric) covered with clean fill

(the purpose of the liner material to differentiate between clean fill and unexcavated material, as well as to

protect the clean fill from contamination in the event additional excavation is required).

Backfill materials will need to be placed with clean or decontaminated equipment. Surface and

subsurface soil excavation and impacted areas in level areas will be backfilled to approximate pre-

construction conditions using continuous backfilling techniques. There will be no backfill placement

required on steep hillside areas with slopes greater than 3:1. The backfill materials obtained from an off-

site borrow source will have properties similar to the native SWMU 23 surface/subsurface soil. This soil

will be subject to analytical testing by the Contractor to ensure that the material satisfies the following

requirements:

TAL Metals

Pesticides and Herbicides

SVOCs

Sum of benzene, toluene, ethylbenzene, and xylenes, USEPA SW-846 5030 / 8021 - less than

1 ppm.

• Total PCB, USEPA SW-846 8082 - less than 1 ppm.

Additionally, the backfill material shall meet the physical characteristics described below for each of the

six primary excavation areas. The backfilled areas will be restored to pre-construction conditions using

permanent stabilization practices by covering them with gravel, and (where appropriate) vegetation

featuring a variety of habitat enhancement plant species.

Surface/Subsurface Soil Excavation Backfill (to within 9-inches below the ground surface elevation) -

Backfill soil for the surface/subsurface soil excavation area will be placed in 1-foot thick lifts, and

compacted by track-walking across the backfilled area with track-type equipment. As previously noted,

the removal of thin soil horizons from more highly sloped areas will not be restored by backfilling and

consequently those same high-slope areas will not be compacted by track-walking.

051401/P 3-7 CTO F272

SWMU 23 Interim Measures Work Plan Revision: 2

> Date: June 2014 Section: 3 Page 8 of 14

<u>Surface/Subsurface Soil Excavation Topsoil/Gravel (top 9-inches)</u> – The existing surface in the

surface/subsurface soil excavation area is covered with either gravel or grass. The top 9 inches of

backfill in gravel areas will be American Association of State Highway and Transportation Officials

(AASHTO) No. 7 stone compacted using a smooth drum roller or equivalent. The top 9 inches of backfill

in vegetated areas will be uncompacted topsoil.

Restoration

The disturbed areas backfilled and regraded as part of the IMWP implementation will be restored and

stabilized using permanent stabilization practices. As previously stated, there will be no backfill

placement and no restoration required for steep hillside areas with slopes greater than 3:1. Restoration

will consist of surface preparation, fertilizing, seeding, and mulching, where appropriate. Seeding

procedures and procedures for associated activities (fertilizing and mulching) are presented in detail in

Section 4.4. The following paragraphs describe the restoration activities that will take place for various

areas/activities.

<u>Surface/Subsurface Soil Excavation Area Restoration</u> – Restoration includes the preparation of gravel

and vegetation surfaces. The Contractor will identify the areas that require gravel and vegetation

surfaces prior to excavation.

Erosion and Sediment Control

Before excavation activities begin, E&S controls will be established to prevent impacts to surface water

downgradient of the disturbance areas, namely Lake Greenwood (see Section 4.0). During excavation,

backfilling, and restoration operations and until stabilization is achieved (either through placement of

biodegradable erosion control matting or vegetation establishment), the E&S controls will be regularly

inspected and maintained. To prevent contact with soil in excavation areas and to control the potential for

accumulation of precipitation in excavation areas, tarps or plastic sheeting will be employed as temporary

barriers (secured with clean fill) to keep contaminated soil from becoming saturated in the excavations.

E&S control requirements to be complied with during IMWP implementation include the Indiana Storm

Water Quality Manual (IDEM, 2007).

Decontamination Pad

Temporary decontamination pad(s) will be set up to clean the equipment used to excavate and transport

contaminated soil at various locations. The pads will be sized to accommodate all the equipment to be

051401/P 3-8 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

> Section: 3 Page 9 of 14

used at the site, and will be constructed in a manner that contains all the contaminated material removed

from equipment and the liquids used to clean the equipment. Contaminated material removed from the

equipment will be disposed off-site with the excavated soil. Water from the temporary decontamination

pad will be collected for off-site disposal by the EMAC contractor. Additional decontamination pad

requirements are discussed in Section 4.5. Care will be taken to keep off-road transport equipment clean

to minimize the spread of contaminated soil to areas adjacent to the excavations or other areas within

SWMU 23. Any soil removal from these areas, and any associated disposal and restoration costs will be

the responsibility of the Contractor.

Dewatering Pad

If required, a temporary dewatering pad will be set up to dewater excavated soil that is exposed to heavy

precipitation events. Although the need to dewater any excavated soil is not anticipated, should

excavated soil require dewatering prior to off-site disposal, wet soil will be stockpiled on a dewatering pad

which will be located within the construction area. The dewatering pads will be sized to accommodate

excavated soil and loading equipment, as necessary. The dewatering pad will be constructed in such a

manner that will retain all materials while allowing the water to drain by gravity from the soil and be

collected in a sump. The water will then be filtered to remove any remaining soil. After the water is

filtered, it will be sampled for characterization and staged for eventual off-site disposal. In addition, the

dewatering pad will be constructed to allow for the loading of dewatered soil material into trucks for

transport to the NSA Crane-approved off-site disposal facility.

The volume of water collected through dewatering is not expected to be large, unless soil

excavation/removal is performed during periods of heavy precipitation. The EMAC contractor will make

every effort to prevent or minimize the excavation of soil requiring dewatering. Excavation activities will

cease during heavy rain events, and excavations will be covered with tarps or plastic sheeting (as

temporary barriers and anchored with clean fill) to keep contaminated soil from becoming saturated in the

excavations. If the EMAC contractor fails to show due diligence to prevent or reduce the accumulation of

excess water, then the cost of the management and disposal of the water will be borne by the EMAC

contractor. Additional dewatering pad requirements are discussed in Section 4.5.

<u>Clearing</u>

Although extensive vegetation clearing is not anticipated, it is anticipated that there will be a need for

limited brush and tree vegetation clearing to support access of earthmoving equipment and field

personnel to the three PAH Soil Excavation Areas and the three Lead Excavation Areas. Vegetation

051401/P 3-9 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 3 Page 10 of 14

clearing will be kept to a minimum to minimize impacts to natural habitat, and in accordance with the

woody vegetation removal limitations described in Section 3.5.2. Cleared vegetation will be chipped, and

disposal will be at the direction of the Officer in Charge of Construction (OICC). Standing trees will not be

removed from April 1 through September 30 to comply with Indiana bat regulations, as addressed in

Section 3.5.2.

3.3 SEQUENCE OF IMWP IMPLEMENTATION

The generalized sequence of construction activities is presented below. This sequence of construction is

subject to change based on the Contractor's Work Plan and the Navy's selected construction approach.

1. Hold a pre-IMWP implementation meeting with the NSA Crane OICC, Contracting Officer, IM

Contractor, and Tetra Tech representative, at a minimum.

2. Inspect and photograph SWMU 23 to verify existing site conditions, confirm all utility locations, and

obtain all required permits.

3. Install perimeter controls per the Erosion and Sediment Control Plan (Section 4.0). Maintain all

perimeter controls during excavation and restoration activities.

4. Clear areas for support features including, but not limited to, the decontamination pad, materials

storage area, and potential dewatering pad. Construct the support features as needed in work areas.

5. Excavate PAH-contaminated soil areas from SWMU 23. Continuous backfill shall be employed

during soil excavation as much as is practical to reduce the amount of open excavations. Load and

transport soil to the NSA Crane-approved off-site disposal facility. Following the excavation and

removal of PAH-contaminated soil, restore the disturbed areas as required.

6. Excavate the lead-contaminated soil areas from SWMU 23. The contractor may elect to stabilize

lead-contaminated soils that fail the TCLP test, because without stabilization those soils would require

management, transport, and disposal as hazardous waste. The lead-contaminated soil will be loaded

for off-site disposal. Load and transport soil to the NSA Crane-approved off-site disposal facility.

Following the excavation and removal of lead-contaminated soil, restore the disturbed areas as

required

051401/P 3-10 CTO F272

SWMU 23 Interim Measures Work Plan Revision: 2

Date: June 2014 Section: 3 Page 11 of 14

7. Employ continuous backfill during soil excavation as much as is practical to reduce the amount of

open excavations.

8. Following the excavation and removal of lead-contaminated soil, restore the disturbed areas as

required.

9. Following transportation and disposal of all excavated surface/subsurface soil, remove the dewatering

pad (if necessary), decontamination pad, and materials storage area. Tetra Tech will collect

verification samples from within the footprint of the support features. All costs associated with

remediation of any contamination found in the support areas will be borne by the EMAC contractor.

Following verification that the ground beneath these support features was not impacted by

construction activities, regrade as necessary and establish permanent stabilization.

10. Following permanent stabilization of all disturbed areas, and with the approval of the OICC, remove

all remaining perimeter controls, and immediately stabilize all remaining disturbed areas.

3.4 STORMWATER POLLUTION PREVENTION

The SWMU 23 ground surface hydrology, grading, and cover will not be altered from IMWP

implementation activities. Pre- and post-development runoff from the limits of disturbance will be the

same; therefore, additional stormwater detention capacity is not required.

If the total disturbed area for construction of the dewatering pad (if necessary), decontamination pad,

materials storage areas, soil removal areas, etc. is less than 1.0 acre, then the preparation of an IDEM

Storm Water General Permit will not be required for this activity. As currently envisioned, it is unlikely that

an IDEM Storm Water General Permit would be needed for this interim measures activity because the

disturbed area will be less than 1 acre. However, since the disturbed soil removal areas sum to

approximately 0.30 acres, if the area to be disturbed during the construction of the dewatering pad (if

necessary), decontamination pad, materials storage areas, etc., is greater than 0.70 acres, then the

EMAC contractor will be required to prepare an IDEM Storm Water General Permit for this activity.

Should the EMAC contractor choose to construct haul roads to access downslope areas excavation

areas, then the total area disturbed to construct the haul roads should be included in the calculation of the

total area of disturbance. Additionally, IMWP implementation activities require the use of best

management practices for E&S control and stormwater pollution prevention as described in Section 4.0.

051401/P 3-11 CTO F272

SWMU 23 Interim Measures Work Plan Revision: 2

> Date: June 2014 Section: 3 Page 12 of 14

3.5 OTHER IMWP IMPLEMENTATION REQUIREMENTS

3.5.1 <u>Utilities</u>

The Contractor is required to verify all utility locations and adequately protect any utilities located in the

active work areas before any earth-disturbing activities begin. Potable water for project personnel and

equipment decontamination will be available at B-3245.

3.5.2 <u>Protection of Natural Resources</u>

Threatened and endangered species or species of special concern protected under Indiana or federal

regulations exist or may exist at SWMU 23, and will be protected. Protected bird species that may use

SWMU 23 as part of their home range include the bald eagle, osprey, sharp-shinned hawk, red-

shouldered hawk, broad-winged hawk, black and white warbler, hooded warbler, and the worm-eating

warbler (B&RE, 1997). Also, the Indiana bat, a federally endangered species, is known to forage at NSA

Crane. During the spring and summer, Indiana bats roost in trees and forage for insects primarily in

riparian and upland forests. The most important characteristic of roost trees is thought to be structural-

exfoliating bark with space for bats to roost between the bark and the bole of the tree. To a limited extent,

tree cavities and crevices are also used for roosting. Although extensive tree removal is not anticipated,

there may be some limited vegetation removal required to access the northernmost and westernmost soil

removal areas to address lead and PAH contamination, respectively. When vegetation removals are

necessary, the Contractor will comply with the requirements presented here.

In 1997, NSA Crane received a letter from the United States Fish and Wildlife Services (USFWS) stating

that, in their opinion, NSA Crane had an abundance of Indiana bat habitat, and that any activity that would

result in the clearing of woody vegetation may affect the Indiana bat and would require consultation under

the Endangered Species Act (ESA). The USFWS recommended interim guidelines for protecting Indiana

bats and their habitat from silvicultural activities, and these recommendations were immediately

implemented by NSA Crane under the timber management program.

Because of the Indiana bat and its potential habitat, the cutting of trees at NSA Crane is restricted to

certain times during the year A summary of Indiana bat-related restrictions prepared by the NSA Crane

Natural Resources Office (i.e., "bat primer") is as follows:

051401/P 3-12 CTO F272

SWMU 23 Interim Measures Work Plan Revision: 2

> Date: June 2014 Section: 3 Page 13 of 14

Consult with the NAVFAC Crane Natural Resources Office prior to any tree removal.

• Woody vegetation that is 5 inches in diameter or greater at 4.5 feet above the ground surface may not

be removed from April 1 through September 30.

Standing dead trees may not be removed from April 1 through September 30.

• Timber harvesting may occur after September 30 and before April 1 without a case-by-case

consultation, provided the interim guidelines for silvicultural treatment issued to the NAVFAC Crane

Natural Resources Office by the USFWS are followed.

During emergency situations, necessary and prudent tree removal is allowed at all times without

consultation. However, the contractor will still need to seek the approval of the NAVFAC Crane

Natural Resources Office.

Brush clearing of woody vegetation less than 3 inches in diameter at 4.5 feet above the ground may

occur at any time of the year without consultation.

All other tree removal or clearing projects not covered above must be submitted to the USFWS for

informal consultation on a case-by-case basis.

3.5.3 Traffic Control Plan

Access to NSA Crane is via four gates: the Main Gate referred to as the Bloomington Gate (Gate House

No. 1) in the north, Burns City Gate (Gate House No. 2) in the west, Bedford Gate (Gate House No. 3) in

the east, and Crane Gate (Gate House No. 4) in the northwest. NSA Crane will be accessed by the

Contractor only through the Crane Gate. All vehicles will pass through the Crane Gate via the traffic

routing plan shown on Figure 3-2. The Contractor is not permitted to travel within restricted areas of the

facility. All waste hauling vehicles will be weighed upon arrival and at time of departure using the certified

weight scale located at the Defense Reutilization and Marketing Office (DRMO) (Building 2943). The

DRMO scale is operated during normal business hours, and weight tickets are available. All waste

hauling trucks shall record both empty (tare) and loaded (gross) weights for each trip.

051401/P 3-13 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 3
Page 14 of 14

3.5.4 <u>Contractor Requirements</u>

The Contractor will be required to perform all IMWP implementation activities in accordance with the

Contractor's Basic Contract, NSA Crane Contractor's Operations Manual (NSWC Crane, 2002), and

supplemental specifications provided in Appendix C.

The IWMP will be implemented by the Contractor, NSA Crane, and Tetra Tech, with work assignments

summarized in Table 3-1.

3.6 IMPLEMENTATION

The Contractor will coordinate all field work through the OICC.

IMWP implementation may be impacted by NSA Crane activities and the facility's "Protective Measures."

NSA Crane will implement a corresponding set of "Protective Measures" based on the warnings provided

by the Homeland Security Advisory System in the form of graduated "Threat Conditions." The Contractor

will be subject to any implemented "Protective Measures."

The Navy will provide a full-time oversight representative during IMWP implementation.

051401/P 3-14 CTO F272

TABLE 3-1

WORK ASSIGNMENT RESPONSIBILITY CHART INTERIM MEASURES WORK PLAN SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA

WORK ITEM	CONTRACTOR	NSA CRANE	Tetra Tech
Pre-IMWP Implementation Meeting	X	Х	Х
Interim Measure Implementation	X		
Contractor Work Plan (1)	X		
Site Specific Health and Safety Plan / Activity Hazard Analysis	Х		
Project Quality Control Plan	X		
Surveying and marking of excavation nodes			Х
Environmental Conditions Report	(2)		X
Permits			•
- Safety & Building Availability Permit (ESO 8020/11)	Х		
- Digging Permit (NWSCC 11000/3)	X ⁽³⁾		
- Flame Tool / Hot Work Permit (NWSCC 11320)	X		
- IDEM Storm Water General Permit	X		
Field Work Reports and Submittals (4)	X		
Sampling and Analysis	X ⁽⁵⁾		X ⁽⁶⁾
Wastewater Disposal (Decontamination Water)	X		
CTO Closure Report	X ⁽⁷⁾		Х

NOTES:

- 1. Contractor Work Plan includes, but is not limited to, an excavation and handling plan, waste management plan, environmental protection plan, erosion and sediment control plan, stormwater pollution prevention plan, sampling plan, and transportation and disposal plan.
- 2. Contractor will participate in documenting environmental conditions before, during, and after implementation of the interim measures.
- 3. Contractor completes the permit form.
- 4. Contractor will furnish items identified in the Basic Contract, NSA Crane Contractor's Operations Manual, and the Supplemental Specifications provided in Appendix C.
- 5. Contractor will be responsible for the collection of characterization samples required for off-site disposal of excavated surface soils. Contractor will be responsible for collection, storage, characterization, and discharge of wastewater to the NSA Crane approved stabilized drainage channel, storm drain, or wastewater treatment plant. Contractor will be required to characterize backfill materials.
- 6. Tetra Tech will be responsible for collection and analysis of soils beneath equipment laydown areas and project support areas after completion of excavations.
- 7. Contractor will furnish items identified in the Supplemental Specifications provided in Appendix C.

CTO - Contract Task Order IMWP - Interim Measures Work Plan NSA - Naval Support Activity

Tetra Tech - Tetra Tech, Inc. X – Indicates responsible party

NWSCC - Naval Weapons Support Center Crane

ESO - Explosives Safety Office

IDEM - Indiana Department of Environmental Management

TABLE 3-2

EXCAVATION NODES FOR SWMU 23 INTERIM MEASURES

NSA CRANE

CRANE, INDIANA

Subarea Name	Excavation Node Point Label	Northing	Easting
	23SB010	1318842.88	3025355.23
	23SB048	1318836.60	3025390.52
PAH 1 (Northern)	23SB074	1318811.92	3025380.00
	23SB053	1318780.09	3025337.17
	23SB049	1318829.21	3025348.17
	23SB059	1318710.14	3025290.40
PAH 2 (Central)	23SB073	1318750.63	3025327.79
PAR 2 (Ceriliai)	23SB072	1318711.71	3025346.21
	23SB062	1318676.73	3025304.16
	23SB001	1318534.96	3025358.58
PAH 3 (Southern)	23SB066	1318600.89	3025321.45
PARI 3 (Southern)	23SB064	1318632.33	3025315.95
	23SB069	1318603.25	3025369.00
	23SB010	1318842.88	3025355.23
	23SB049	1318829.21	3025348.17
Lead 1 (Western)	23SB079	1318843.39	3025345.45
Lead I (Western)	23SB078	1318851.72	3025350.14
	23SB077	1318851.72	3025360.04
	23SB076	1318846.51	3025364.20
	23SB016	1318880.19	3025528.57
	23SB042	1318861.01	3025538.03
Lead 2A / 2B	23SB015	1318848.85	3025592.99
(Central)	23SB092	1318790.42	3025550.77
(Gential)	23SB088	1318810.62	3025515.17
	23SB089	1318805.53	3025472.94
	23SB045	1318861.63	3025480.44
	23SB039	1318902.19	3025568.99
Lead 3 (Northeastern)	23SB040	1318876.80	3025578.59
Lead 5 (Northeastern)	23SB046	1318877.42	3025547.01
	23SB047	1318899.09	3025550.72

(see Figure 3-1 for the mapped locations of these excavation nodes).

TABLE 3-3
SUMMARY OF SWMU 23 SOIL EXCAVATIONS TO ADDRESS LEAD AND PAH CONTAMINATION WITH EXCESS RISK NSA CRANE. INDIANA

Excavation Type	Area ID	Excavation Area - Square Feet	Proposed Depth for Soil Excavation (Feet)*	Volume of Soil Proposed for Removal (Cubic Feet)	Volume of Soil Proposed for Removal (Cubic Yards)	Average Density of Soil Proposed for Removal (Lbs./Cubic Ft.)	Average Density of Soil Proposed for Removal (tons/cubic yard)	Mass of Soil Proposed for Removal (Pounds)	Mass of Soil Proposed for Removal (tons)
PAH	Excavation Area 1	1849	4	7395	274	121.21	1.64	896358	448.2
PAH	Excavation Area 2	1684	2	3369	125	121.21	1.64	408308	204.2
PAH	Excavation Area 3	2365	2	4730	175	175 121.21		573352	286.7
	Summed PAH Areas =	5898	To	otal Cubic Yards =	574				
					Total Tons of	ted Soil =	939		
Lead	Excavation Area 1	208	2	415	15	119.45	1.61	49579	24.8
Lead	Excavation Area 2A (west)	3169	6	19014	704	119.45	1.61	2271222	1135.6
Lead	Excavation Area 2B (east)	2972	2	5944	220	119.45	1.61	710011	355.0
Lead	Excavation Area 3	590	2	1180	44	119.45	1.61	140973	70.5
	Summed Lead Areas =	6939	To	otal Cubic Yards =	983				
						1586			

Total Tons of Soil to be Excavated =

2525

Note:

Soil densities are from the soil sample collected at location 23SB072 and reflect the shallower averaged soil densities for lead and the total averaged soil densities for PAHs.

Within designated excavation areas the proposed excavation depth from ground surface will be achieved unless the top of berock is encountered first.

For specific areas, post-excavation soil confirmation sampling may be required to verify sufficient contaminated soil volumes were removed to reduce exposure risks.

^{*} Proposed excavation depth based on confirmed contamination depth, but some areas of shallow bedrock may prevent complete excavation to this depth.

NSA Crane SWMU 23 Interim Measures Work Plan

Revision: 2

Date: June 2014 Section: 4

Page 1 of 5

4.0 EROSION AND SEDIMENT CONTROL PLAN

4.1 PURPOSE

The purpose of this section is to describe the steps that will be taken to minimize and/or eliminate erosion

and sedimentation during the implementation of the IMWP at SWMU 23. The E&S control plan has been

developed in accordance with the guidelines defined in the Indiana Storm Water Quality Manual

(Handbook) (IDEM, 2007). The E&S control devices described in this text can be modified based on

construction equipment and techniques presented in the Contractor's Work Plan. Selected E&S control

devices must be identified in the E&S Control Plan submitted with the Contractor Work Plan. After the

E&S Control Plan is approved, no changes can be made without approval by the OICC.

The Contractor should note that this E&S Control Plan assumes that all elements of the SWMU 23

removal action will occur at one time. In the event the Navy elects to phase the construction activities at

SWMU 23, all of the E&S Controls identified in this plan may or may not be required. The Contractor

must identify the E&S Controls required for the construction activities identified in their work plan.

4.2 EROSION AND SEDIMENT CONTROL REQUIREMENTS

E&S control measures are implemented to reduce or eliminate erosion and sedimentation of soil that

would be detrimental to surface water quality. Surface drainage at SWMU 23 flows into drainage ditches

and culverts that flow into unnamed intermittent streams that discharge to Lake Greenwood. A series of

drainage ditches and culverts were constructed across SWMU 23 to promote local surface drainage and

control surface flow. Overland flow follows topography and generally flows into the adjacent valleys that

are north and west of Building 36.

The elevation of Lake Greenwood is approximately 580 feet amsl. The operational portion of SWMU 23

is located within a relatively flat area at the top of a steep slope that is bounded on the north and west by

heavily wooded areas with steep hillsides. Surface elevations range from approximately 755 feet amsl in

the area of Building 36, to approximately 675 feet amsl in the northwestern area of SWMU 23.

The drainage ditches that convey flow to Lake Greenwood are usually dry and are typically only wet

during and immediately after rainfall. These perennial drainageways converge and flow to the north-

northwest, eventually discharging to Lake Greenwood, located approximately 3,200 feet to the north.

051401/P 4-1 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 4

Page 2 of 5

IMWP implementation activities for SWMU 23 consist of excavating PAH-contaminated soil and lead-

contaminated soil for disposal, backfilling excavations, and restoring disturbed areas. Surface and

subsurface soil will be excavated from discrete areas located within SWMU 23.

Considering the type of IMWP activities and access issues, the proposed E&S control measures include

the following:

• Silt Fence - Placed along the downslope sides of the surface soil excavation areas and the gravel

construction entrances to provide a temporary sediment barrier. Silt fencing consists of synthetic filter

fabric and wooden posts.

Gravel Construction Entrances – Placed as a controlled site entrance to reduce the amount of

sediment transported by construction vehicles onto facility and public roads.

Dust Control – Utilized to prevent surface and air movement of dust from exposed soil surfaces, and

to reduce the amount of airborne substances that may present health hazards, traffic safety

problems, or harm plant/animal life.

Biodegradable Features – Utilized to manage surface precipitation and surface flow through the

strategic placement of straw bales, coconut fiber matting, or scattered straw to protect newly seeded

areas. Erosion control wattles made from all natural fibers such as coconut coir or straw bales may

be placed around storm drains or low flow channels to filter and control surface water runoff.

Permanent Seeding – Utilized to establish perennial vegetation on disturbed areas by planting seeds

of native grasses.

The construction, implementation, and maintenance of these E&S control devices will be in accordance

with the Handbook. Figure 3-1 presents the proposed excavation areas. Figures 4-1 and 4-2 present

typical details of the E&S control devices proposed for IMWP implementation (i.e., silt fence, gravel

construction entrance, and in-stream sediment trap). Permanent seeding is discussed in Section 4.4.

Dust control will be addressed in the Contractor's Work Plan. All E&S controls will remain in place until all

upgradient areas have been stabilized. Stabilization will be determined by the OICC.

051401/P 4-2 CTO F272

SWMU 23 Interim Measures Work Plan

Revision: 2 Date: June 2014

Section: 4 Page 3 of 5

4.3 INSPECTION AND MAINTENANCE OF EROSION AND SEDIMENT CONTROLS

In general, all E&S control measures will be checked daily and after each runoff-producing rainfall event

during the IMWP implementation activities. Any required repairs will be made immediately. The following

items will be checked:

• The construction entrance will be maintained in a condition that will minimize tracking sediment onto

facility or public roads.

The silt fence will be checked for undermining or deterioration of the fabric. Sediment will be

removed when the level of sediment causes bulging or reaches one-half of the fabric height.

Seeded areas will be checked regularly to ensure that a good growth of vegetation is maintained and

these areas will be fertilized and reseeded, as needed.

The fuel and lubricant materials storage area will be checked to ensure that stored containers are not

leaking and that any lining system or secondary containment system is functioning properly.

All E&S control devices will be inspected and maintained until the OICC has formally accepted the

permanent stabilization of the disturbed areas. The Contractor will maintain a logbook of all E&S control

device inspections and maintenance. This logbook will be available at the site at all times for inspection

by duly authorized officials including NSA Crane personnel, NAVFAC MidLant and the IDEM.

4.4 SITE RESTORATION

All areas disturbed by IMWP implementation activities (excavation and support facility areas) will be

restored and stabilized using soil, gravel, and permanent seeding. Activities to establish permanent

stabilization will be implemented as soon as possible following the establishing of final grades. The

establishment of permanent vegetation includes site/seed bed preparation, seeding, and mulching of the

following locations:

Surface soil below support facilities

Surface soil excavation areas that extend beyond existing gravel paved areas

The procedures and requirements for permanent seeding activities are presented in Section 3.12 of the

Handbook. The seed mixture recommended for use at SWMU 23 is a standard Indiana seed mixture for

051401/P 4-3 CTO F272

NSA Crane SWMU 23 Interim Measures Work Plan

> Revision: 2 Date: June 2014

Section: 4 Page 4 of 5

open and disturbed areas. The seed mixture includes perennial ryegrass and tall fescue. Planting rates and optimum soil pH for this mixture are presented in Exhibit 3.12-C of the Handbook. Following seeding, the seeded areas will be covered with temporary erosion control matting (e.g., biodegradable materials such as coconut fiber matting, straw, etc.) to provide additional stabilization until vegetation is established. In the event that disturbed areas are brought to final grade outside of the optimal growing season for the permanent seed mixture, the disturbed areas will be temporarily stabilized using a temporary seed mixture. The procedures and requirements for establishing temporary stabilization are presented in Section 3.11 of the Handbook. As indicated in the Handbook, E&S control devices will remain in place until permanent stabilization is established over the disturbed areas. Therefore, E&S control devices will not be removed by the Contractor until directed by the OICC.

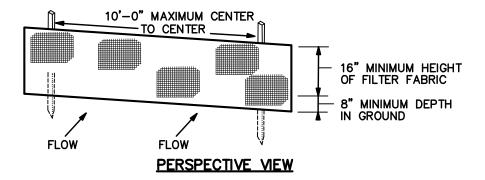
4.5 RESPONSE PROCEDURES FOR SPILL MITIGATION

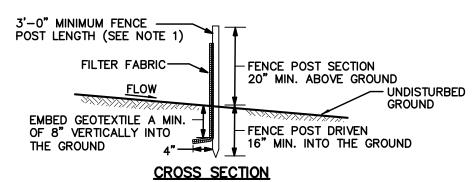
Potential non-stormwater discharges anticipated during IMWP implementation activities include: dewatering liquids; wash water resulting from decontamination of field equipment and vehicles; fuel and lubricant spills from vehicle fueling, lubrication, and maintenance; and spills of fertilizers and small quantities of laboratory chemicals used in sample collection, and other flammable substances.

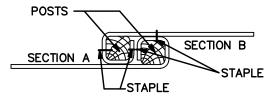
The water from the temporary decontamination pad will be collected for off-site disposal by the EMAC contractor. All vehicle fueling, lubrication, and maintenance will be performed utilizing drip pans to contain any spills that may occur or within the decontamination pad to contain spills. Containers of detergents and vehicle maintenance fluids (e.g., oil, grease, antifreeze, hydraulic fluid, etc.) will be stored within an enclosed, lined, diked area along with the equipment fuel, which will be stored in tanks. This area, referred to as the materials storage area, will be bermed and lined with a 60-mil low-density polyethylene (LDPE) geomembrane and will be sized to contain 110 percent of the volume stored within the area. A small sump, or low point in the liner, will be designed to serve as a collection and monitoring point for any leaks or spills from the containers stored within the materials storage area. When not in use, chemicals, paints, and other flammable substances will be stored in a flammable storage cabinet located within the Contractor's equipment trailer.

Good housekeeping procedures will be followed to reduce risks associated with these materials. These procedures include, but are not limited to: keeping materials in their original containers whenever possible, maintaining original labels and Material Safety Data Sheets (MSDSs), and using proper disposal methods for surplus materials. Some chemicals may require storage in a HAZMAT locker separate from flammables. Accidental spills that may occur will be contained as appropriate for the spilled medium (liquid or solid), and collected and containerized immediately after discovery of the spill. Containerized

NSA Crane SWMU 23 Interim Measures Work Plan

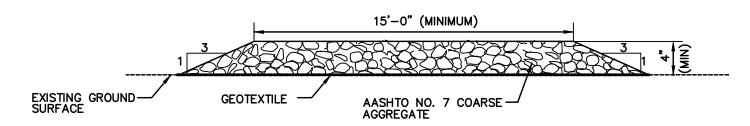

Revision: 2 Date: June 2014 Section: 4


Page 5 of 5


material will be characterized for off-site transportation and disposal. The following spill mitigation equipment should be available on site during construction activities:

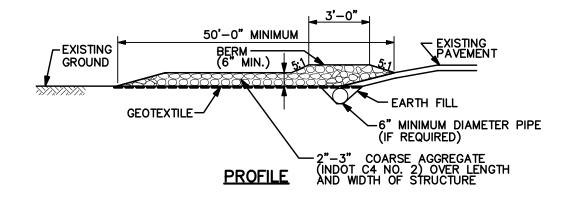
- Drip pans
- · Oil-dry or similar compound
- Absorbent socks
- Shovels
- 55-gallon drums or storage tank (for containerization)
- Labels for contents identification

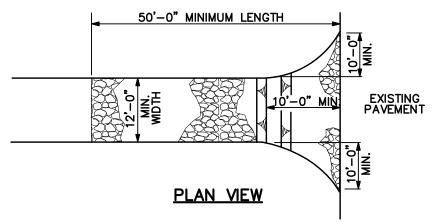
Following spill cleanup, the cause of the spill will be investigated, and material storage and handling procedures will be reviewed and revised where appropriate. All spills will be reported to the NSA Crane Environmental Department.



TOP VIEW - JOINING TWO ADJACENT SILT FENCE SECTIONS

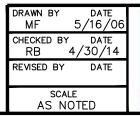
NOTES:


- 1. WOOD POSTS SHALL BE 1.5" BY 1.5" SQUARE (MIN) CUT OR 1.75" DIAMETER (MIN) ROUND AND SHALL BE OF SOUND QUALITY HARDWOOD. STEEL POSTS WILL BE STANDARD T OR U SECTION WEIGHING NOT LESS THAN 1.00 POUND PER LINEAR FOOT.
- 2. FILTER FABRIC SHALL BE FASTENED SECURELY TO EACH FENCE POST WITH WIRE TIES OR STAPLES AT TOP AND MID-SECTION.
- 3. INSTALL SILT FENCE PARALLEL TO THE CONTOUR OF THE LAND.


SILT FENCE

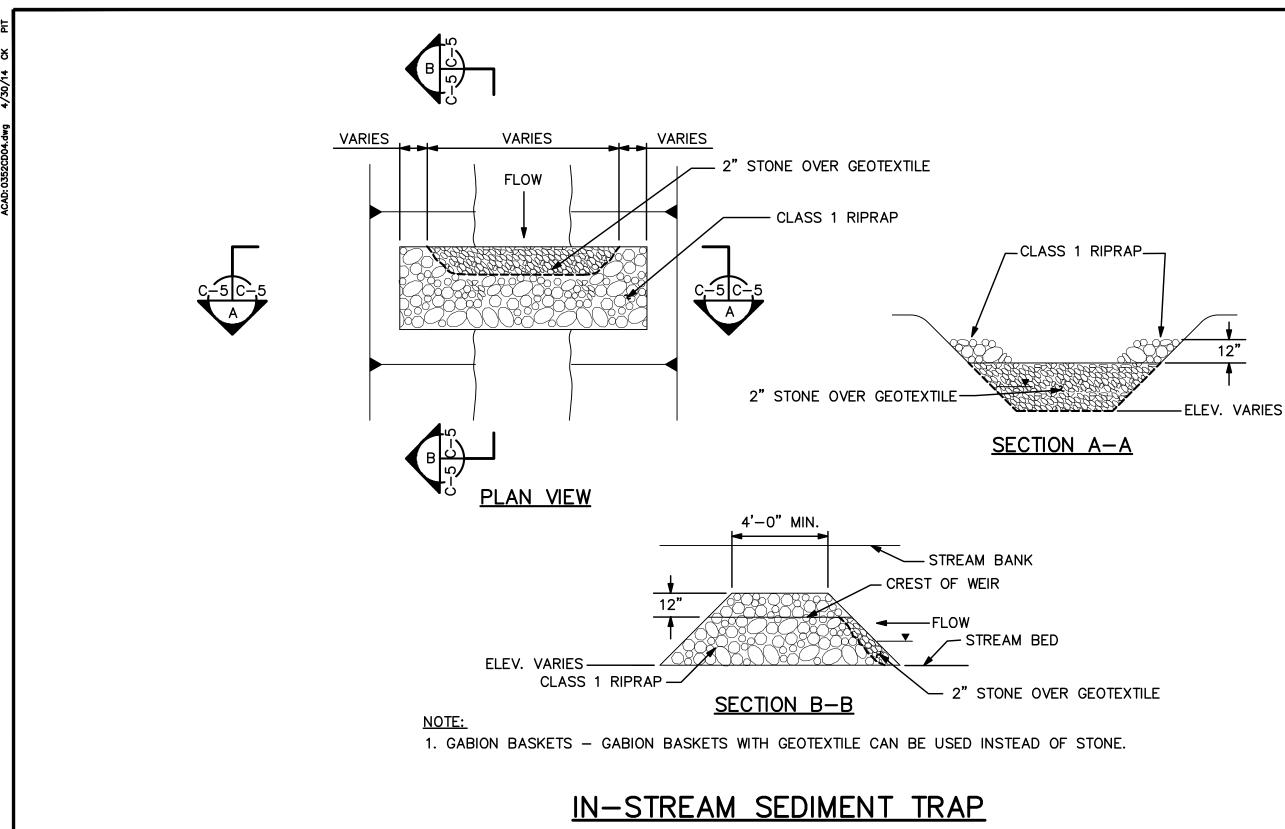
TEMPORARY SITE ACCESS ROAD

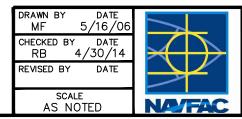
NOT TO SCALE



NOTES:

- ALL SURFACE WATER FLOWING TO OR DIVERTED TOWARD CONSTRUCTION ENTRANCES SHALL BE PIPED THROUGH THE ENTRANCE, MAINTAINING POSITIVE DRAINAGE.
- IF REQUIRED PIPE SHOULD BE SIZED ACCORDING TO THE AMOUNT OF RUNOFF TO BE CONVEYED. A 6" MINIMUM DIAMETER WILL BE REQUIRED.


GRAVEL CONSTRUCTION ENTRANCE


EROSION AND SEDIMENT CONTROL DEVICES SWMU 23 BUILDING 36 BATTERY SHOP INTERIM MEASURES WORK PLAN NSA CRANE

CRANE, INDIANA

-1008CTO NO. F272 APPROVED BY DATE DRAWING NO.
FIGURE 4—1 REV.

NOT TO SCALE

EROSION AND SEDIMENT CONTROL
DEVICES (SHEET 2 OF 2)
SWMU 23
BUILDING 36 BATTERY SHOP
INTERIM MEASURES WORK PLAN
NSA CRANE
CRANE, INDIANA

CONTRACT NO.
-1008
CTO NO.
F272

APPROVED BY

DRAWING NO.
FIGURE 4-2

O

CONTRACT NO.
REV.
O

NSA Crane SWMU 23 Interim Measures Work Plan

> Revision: 2 Date: June 2014

June 2014 Section: 1 Page 1 of 2

REFERENCES

A. T. Kearney, Inc., 1987. Preliminary Review/Visual Site Inspection (PR/VSI) Report of Naval Weapons

Support Center, Crane, Indiana. March.

Brown & Root Environmental (B&RE), 1997. Current Contamination Conditions Risk Assessment.

SWMU #03/10 (Ammunition Burning Ground), SWMU #07/09 (Old Rifle Range), SWMU #06/09

(Demolition Range), Naval Surface Warfare Center Crane, Crane, Indiana. November.

Hazardous Materials Technical Center (HTMC), 1985. Navy Assessment and Control of Installation

Pollutants - Confirmation Study for Sites 2, 4, 6, and 10, Naval Weapons Support Center, Crane, Indiana.

Rockville, Maryland. June.

IDEM (Indiana Department of Environmental Management), 2007. Indiana Storm Water Quality Manual,

Planning and Specification Guide for Effective Erosion and Sediment Control and Post-Construction

Water Quality, www.idem.IN.gov/stormwater, October.

Morrison Knudsen, 2000. Interim Measures Report, SWMU 23/00 Battery Shop, Voluntary Interim

Measures, NSWC Crane, Crane, Indiana,

Murphy, W.L. and R. Wade, 1998a. Final Report: RCRA Facility Investigation, Phase II Release

Assessment for Surface Water, SWMU 03/10, Ammunition Burning Ground, prepared by U.S. Army

Corps. Of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, Technical Report GL-98-2,

February.

Murphy, W.L. and R. Wade, 1998b. Final Report: RCRA Facility Investigation, Phase III Ground Water

Release Characterization, SWMU 02/11 — Dye Burial Grounds, Naval Surface Warfare Center, Crane

Division, Crane Indiana, prepared by U.S. Army Corps of Engineers, Waterways Experiment Station for

Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina. Technical

Report GL-98-15, July.

Naval Energy and Environmental Support Activity (NEESA), 1983. Initial Assessment Study (IAS) of

Naval Weapons Support Center, Crane, Indiana; Port Hueneme, California. May.

051401/P R-1 CTO F272

SWMU 23 Interim Measures Work Plan Revision: 2

Date: June 2014

Section: 1
Page 2 of 2

Naval Surface Warfare Center (NSWC) Crane, 2002. Contractor's Operations Manual, Naval Surface

Warfare Center Crane Division, http://www.crane.navy.mil/contacts/ContractorsOperationsManual.pdf.

March.

Tetra Tech (Tetra Tech, Inc.), 2001. Final Base-Wide Background Soil Investigation Report for Naval

Surface Warfare Center Crane, Crane, Indiana. January.

Tetra Tech, Inc., 2012. Final Sampling and Analysis Plan, Resource Conservation and Recovery Act

Facility Investigation SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane, Crane, Indiana.

August.

Tetra Tech, Inc., 2013a. Field Task Modification Request (FTMR) No. 1 to the Sampling and Analysis

Plan, Resource Conservation and Recovery Act Facility Investigation SWMU 23 - Battery Shop

Building 36, Naval Support Activity Crane, Crane, Indiana. April.

Tetra Tech, Inc., 2013b. Draft Resource Conservation and Recovery Act Facility Investigation for

SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane, Crane, Indiana. August.

Tetra Tech, Inc., 2013c. FTMR No. 2 to the Sampling and Analysis Plan, Resource Conservation and

Recovery Act Facility Investigation SWMU 23 - Battery Shop Building 36, Naval Support Activity Crane,

Crane, Indiana. September.

051401/P R-2 CTO F272

APPENDIX A

RFI FIELD REPORT

- A.1 SITE FIELD FORMS
- A.2 SITE PHOTOGRAPHS
- A.3 GEOPHYSICAL FIELD NOTES
- A.4 BUILDING 36 SITE DRAWINGS

NSA Crane SWMU 23 Field Report Revision: 0

Date: May 2014

APPENDIX A

2.0 SWMU 23 FIELD REPORT

The following information presents Section 2.0 of the SWMU 23 draft RFI Report along with supplemental

information from the Field Task Modification Requests No. 1 and No. 2.

Several sampling events have been conducted at SWMU 23 between October 2012 and May 2014. This

report describes the various sampling activities, procedures, and documentation utilized during these

events. The field investigations were performed in October/November 2012, January 2013, May 2013,

March/April 2014, and May 2014. The October/November 2012 and the January 2013 field events were

conducted under the original UFP- SAP (Tetra Tech 2012)); the May 2013 field event was conducted

under Field Task Modification Request (FTMR) No. 1, and the March/April 2014 and May 2014 field

events were conducted under FTMR No. 2.

2.1 OVERVIEW

SWMU 23 (Battery Shop Building 36) is contained within the boundary of NSA Crane in the north-central

portion of the facility, and encompasses approximately 6.5 acres (Figure 1-1 of the IMWP). SWMU 23, as

presented on Figure 1-2 of the IMWP, is bounded on the north and west by heavily wooded areas with

steep hillsides. Nearby Building 34 is located approximately 240 feet to the east, and is presumed to be

hydraulically upgradient of SWMU 23 based on topography.

SWMU 23 consists of an active building which houses a battery storage area, an oil/ water separator

(O/WS), a suspected fuel underground storage tank (UST), and a former debris disposal area. The field

sampling events included surface and subsurface soil sampling, and surface water and sediment

sampling. Table 2-1 presents the collection method and lab analysis summary for each sample. Several

proposed subsurface samples were not collected because of the shallow depth of bedrock along the hill

slope. Also, two surface water samples and one sediment sample were unable to be collected because of

insufficient available sample volume. The geophysical investigation was conducted in an area

immediately west of Building 36 to determine if a UST still exists at the site.

All work performed for the field investigations were conducted in accordance with the procedures and

methodologies described in the IDEM-approved UFP-SAP (Tetra Tech, 2012). Standard Operating

Procedures (SOPs) that governed the field work were included in Appendix B of the approved UFP-SAP.

Various field forms, geophysical field notes, and site photographs associated with the field events are

NSA Crane SWMU 23 Field Report

Revision: 0 Date: May 2014

provided in this report in Appendices A-1 through A-3, respectively. Historical Building 36 site drawings

are presented in Appendix A-4.

2.2 MOBILIZATION / DEMOBILIZATION

Following approval of the various planning documents (UFP-SAP/ FTMRs), Tetra Tech personnel began

initiation of mobilization activities. All field team members reviewed the approved planning document, any

associated appendices, and the Health and Safety Plan (HASP) prior to the start of project activities. In

addition, the Field Operations Leader (FOL) held a field team orientation meeting to ensure that personnel

were familiar with the scope of the field activities.

Prior to the initiation of fieldwork, the FOL arrived at the site and began on-site mobilization activities.

These activities included coordination with NSA Crane personnel, and utility clearance of all proposed

boring locations through the Indiana Underground Plant Protection Service (IUPPS). The equipment

required for the field activities was shipped to the site. At the conclusion of field activities, the FOL

completed the decontamination and demobilization of all equipment.

2.3 SITE INVESTIGATION METHODOLOGIES AND PROCEDURES

2.3.1 <u>Sample Collection Methods</u>

During the SWMU 23 field investigations, soil and sediment samples were collected via hand auger,

plastic trowel, or direct-push technology (DPT). Surface water samples were collected directly into the

sample containers.

Hand Auger

Hand augering involves manually turning a 2.5-inch (or similar) diameter stainless steel bucket auger into

the ground surface to the desired sample depth. All hand augered soil borings at SWMU 23 were

advanced to the proposed depth, unless refusal was encountered prior to that depth. If refusal (other than

bedrock surface) was encountered, the auger was removed and repositioned nearby until the desired

depth was obtained. The auger's bucket was decontaminated in the field between each sample location.

Hand Trowel

Sampling of the drainageway sediment was accomplished by use of a dedicated, disposable, plastic hand

trowel. A new disposable hand trowel was used at each sample location.

NSA Crane SWMU 23 Field Report Revision: 0

Date: May 2014

DPT

The DPT was utilized to collect soil samples from all other areas where access permitted its use. A

dedicated, macrocore acetate liner was pushed into the soil to the desired sample depth. Upon removing the macrocore liner, it was cut open to allow access to the sample. The soil was scanned the length of

the macrocore liner for volatile organic compounds (VOCs) utilizing a photoionization detector (PID). The

soil was also visually inspected by the Site Geologist for any visible signs of contamination (i.e., staining).

see that the distribution is the see see segistive any visible eight of contamination (not, etalling).

If soil staining was encountered, or elevated PID readings were recorded, the VOC sample was collected

from that portion of the soil core liner; otherwise, the VOC sample was collected from the liner as stated

below.

• From 0 to 1 foot bgs, if neither the PID readings were greater than background, nor any visible

discoloration was observed, the VOC sample was collected at 6 inches from the top of the soil core.

From 0 to 2 feet bgs, if neither the PID readings were greater than background nor any visible

discoloration was observed, the VOC sample was collected from three-fourths the distance from the

top of the soil core.

• From greater than 2 feet bgs (e.g., subsurface samples), if neither the PID readings were greater than

background nor any visible discoloration was observed, then the VOC sample was collected from

three-fourths the distance from the top of the soil core.

For samples other than VOCs, the material from the sleeve was initially placed in a Ziploc bag where it

was thoroughly homogenized prior to collecting the sample and placing it in the appropriate sample

container.

Direct Fill

Sampling of the drainageway surface water was accomplished by placing the sample bottle directly

beneath the water's surface. For VOC and dissolved metals samples, caution was exercised as to not

spill the sample perseverative within the bottles.

2.3.2 Sample Logging

Boring logs and/or soil sample log sheets were maintained for each sample collected during the

SWMU 23 field events. All sample log sheets, field notes, and chain-of-custody forms are included in

Appendix A-1.

NSA Crane SWMU 23 Field Report

Revision: 0 Date: May 2014

2.4 SAMPLING OPERATIONS

A total of 333 soil, 7 drainageway sediment, 1 subsurface structure sediment, and 6 surface water

samples were collected at SWMU 23. Table 2-1 presents the samples collected and the laboratory

analyses for each.

The principal potential contaminant release and migration pathways investigated were:

Documented direct discharge to surface soil (historical dumping).

Documented direct discharge of contaminants from dumping or spills to surface water drainage

pathways.

Spills from material handling (e.g., solvents) or accidents in Building 36 or near the suspected UST.

Direct discharge from building drains or the O/WS of battery acids, solvents, and/or oils.

Leaks from storage tanks (fuel tank, solvent/degreaser) or associated piping.

Transport via surface runoff, leaching to deeper soil and groundwater, discharge of contaminated

groundwater at hillside seeps, downgradient migration of surface water and sediment in drainage

channels, and downgradient migration of groundwater.

2.4.1 Soil Sampling

October/November 2012

Soil samples were typically collected downgradient from potential source areas (i.e., O/WS and former

UST), along the hillside downgradient of the building, and in the area where dumping historically occurred.

Twenty-three surface soil samples (from borings 23SB001 through 23SB023) and 12 subsurface soil

samples (from borings 23SB001 through 23SB006 and 23SB024 through 23SB026) were collected (see

Figure 2-1). All surface soil samples were submitted to the fixed-base laboratory (FBL) for analysis of:

VOCs, total petroleum hydrocarbons (TPH) gasoline range organics/extended range organics/diesel range

. (000/500/500)

organics (GRO/ERO/DRO), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, sulfate, and pH. All subsurface soil samples were submitted to the FBL for analysis of: VOCs,

TPH GRO/ERO/DRO, PAHs, and metals.

NSA Crane SWMU 23 Field Report Revision: 0

Date: May 2014

May 2013

Based on the laboratory results from the October/November 2012 field event, supplemental surface and

subsurface soil samples were collected as proposed in the FTMR No.1 to determine the horizontal extent

of PAHs and metals (lead) contamination at SWMU 23.

Eleven surface soil samples and eight subsurface soil samples were collected from boring locations

23SB027 through 23SB037 (see Figure 2-1 of the IMWP). All samples collected from 23SB027 through

23SB032 were submitted to the FBL for PAH analysis only. The samples collected from 23SB033 through

23SB037 were submitted to the FBL for metals (lead) analysis only.

March/April 2014

To further refine the areas of contamination for potential excavation, supplemental surface and subsurface

soil samples were collected in March 2014 as proposed in the FTMR No. 2 to delineate the vertical and

horizontal extent of PAHs and metals (lead) contamination at SWMU 23. An additional seven samples

were collected and analyzed for lead only in April 2014 (see Figure 2-1 of the IMWP).

Seventy-one soil samples were collected from boring locations 23SB002, 23SB003, and 23SB038 through

23SB081. The subsurface soil samples collected from former locations 23SB002 and 23SB003 were to

determine the vertical extent of the PAH contamination at those locations; samples collected from new

boring locations 23SB048 through 23SB075 were to determine the extent of the PAH contamination; and

samples collected from new boring locations 23SB038 through 23SB047 and 23SB076 through 23SB081

were to delineate the lead contamination at the site.

May 2014

Data gaps still existed at the site for vertical delineation of PAHs and lateral delineation for lead; therefore,

additional surface and subsurface soil samples were collected in May 2014 to complete the delineation at

SWMU 23. An additional 18 samples were collected and analyzed for PAHs and an additional 25 samples

were collected and analyzed for lead ((see Figure 2-1 of the IMWP).

Nine samples were collected from former boring locations 23SB001, 23SB004, 23SB048, 23SB059, and

23SB073 and analyzed for PAHs. These soil samples were collected to determine the vertical extent of

the PAH contamination at these locations. Nine samples were collected from new boring locations

23SB090, 23SB091, and 23SB092 and analyzed for PAHs. These soil samples were collected to refine

the distance between former locations. Twenty-five samples were collected from new boring locations

NSA Crane SWMU 23 Field Report

Revision: 0 Date: May 2014

23SB082 through 23SB089 and 23SB092 and analyzed for lead to delineate the lead contamination at the

site.

2.4.2 Drainageway Surface Water and Sediment Sampling

Six surface water samples (23SW001 through 23SW006) and six collocated sediment samples (23SD001

through 23SD006) were collected from six discrete locations within surface water drainageways at

SWMU 23. All sediment samples were collected at a depth of 0 to 0.5 foot bgs. No samples were

collected from location 23SW/SD007 because of the lack of sufficient sediment volume (bedrock was at

the surface), and surface water was not present.

The surface water samples were submitted to the FBL for TPH GRO/ERO/DRO, hardness, and total and

dissolved metals analyses. The majority of the sediment samples were submitted to the FBL for VOCs,

PAHs, PCBs, metals, and total organic carbon (TOC) analysis. Sample 23SD009-0006, collected in May

2013, was only analyzed for VOCs, PAHs, and metals.

All sediment and surface water sample locations are presented on Figure 2-2 of the IMWP.

2.4.3 Oil/Water Separator Sediment Sampling

One sediment sample (23SD008-0006) was collected from the base of the O/WS (see Figure 2-2 of the

IMWP). The sample was collected at a depth of approximately 0 to 4 inches below the top of the residue

at the base of the structure. The structure is approximately 5 feet deep.

This sediment sample was submitted to the FBL for analysis of VOCs, TPH GRO/ERO/DRO, PAHs,

PCBs, metals, and TOC.

2.4.4 <u>Soil Density Sampling</u>

Samples were collected at various depth intervals at SWMU 23 in order to determine the soil density at

the site for purposes of calculating soil weights during potential excavation activities. Four samples were

collected from depth intervals of 1.5 to 2.0, 2.5 to 3.0, 3.5 to 4.0, and 5.0 to 5.5 feet bgs. The soil density

test results can be found in Appendix A-1 of this report.

2.5 GPS/SURVEY

Each proposed sample location at SWMU 23 was initially located by Tetra Tech personnel utilizing a

Trimble XH Global Positioning System (GPS) unit. Proposed sample locations under the asphalt along

Building 36 were marked utilizing utility paint, while proposed sample locations along the hillside and in the

NSA Crane SWMU 23 Field Report Revision: 0

Date: May 2014

wooded area were marked with a brightly colored pin flag pushed into the ground next to the proposed location. Upon completion of the October/November 2012 SWMU 23 sampling event, the sample locations were re-visited and surveyed by a professional surveyor licensed in the State of Indiana. Prior to the March 2014 field effort, all newly proposed sample locations were also surveyed by a professional surveyor.

2.6 GEOPHYSICAL SURVEY

A geophysical survey was conducted to determine the presence or absence of a suspected UST by Tetra Tech on January 22, 2013 using a Geonics, Ltd. EM61-MK2 (EM61) electromagnetic instrument, a GSSI SIR-2000 ground penetrating radar (GPR) system equipped with a 400 megahertz (MHz) antenna, and a magnetic locator instrument (Schonstedt GA-72). Standard operating procedures for the geophysical survey were provided in SOP-11 (Geophysical Survey for Underground Storage Tanks) of the SAP (Tetra Tech, 2012). Appendix A.3 presents the geophysical field notes.

The geophysical survey was conducted after intrusive site investigation activities (i.e., soil borings) had been conducted at the site. The geophysical survey equipment was utilized to survey an approximately 30-foot by 70-foot area centered on the location of the suspected buried tank, as shown on the historical engineering drawings (see Section 1.2.4 of the draft RFI Report). The longer dimension of the survey area (70 feet) was oriented along the long dimension of the buried tank depicted on the drawings (long dimension oriented in a northeast-southwest direction).

Before the geophysical survey was conducted, a survey grid was established in the field by placing 5-foot spaced survey grid markings using taped measurements. Next, all geophysical survey equipment was set up and checked in accordance with manufacturer's recommendations (including instrument calibrations, and a go/no go magnetic locator instrument check that indicated that the unit was capable of detecting ferrous objects).

The EM61 survey was performed along parallel survey lines spaced 2.5 feet apart in the northeast-southwest direction. The GPR survey was performed along parallel lines spaced 2.5 feet apart in two mutually perpendicular directions (both northeast-southwest and northwest-southeast directions). The magnetic locator survey was performed along 5-foot spaced lines in the northeast-southwest direction while the magnetic locator was moved side to side to cover 5 feet of survey width along each survey line. Data station spacing for the EM61 survey was triggered by a survey wheel at 8-inch intervals, and GPR data were collected at 32 scans per second while the GPR antenna was moved along the survey lines at a slow walking pace (corresponding to GPR stations less than 1 inch apart). The survey techniques provided thorough survey coverage of the area of interest. Penetration of the GPR signal into the ground was judged to be between 6 to 9 feet below ground surface (bgs) using handbook time to depth

NSA Crane SWMU 23 Field Report Revision: 0

Date: May 2014

conversion for GPR signal velocities in average soils (a 60 nanosecond time window was used for the survey). Multiple-thousand gallon capacity steel USTs can normally be detected 6 to 10 feet deep using EM61 and magnetic locator instruments.

A color contour map of the EM61 data and a comprehensive interpretation of the geophysical data for the area of interest are displayed in Appendix A on Figure 2-3 in relation to Building 36 and other semipermanent site features measured and located (tied-in) during the survey. The dark blue EM61 color contour represents an absence of detected metal, and EM61 color contours up the color bar represent anomalous response amplitudes in increasing value. The pink color contour represents the instrument responses with the highest values; however, depth, metallic size, and mass also play a key factor in the measured instrument response. The deeper a metallic object is buried, the lower its EM61 response amplitude. Therefore, EM61 amplitude does not provide a unique solution. The EM61 survey area data indicate generally that the survey area appears devoid of metallic presence. A linear anomalous EM61 response near an existing gas meter and gas line shown in Appendix A on Figure 2-3 has been attributed as a possible underground gas line. The only other notable EM61 anomalies are located next to: a fire hydrant valve; a gas meter and line surrounded by protective steel bollards; metallic building doors and apparent aluminum building siding; a reinforced concrete pad; and an engine staged on a palette in the upper right corner of the survey area. These anomalous EM61 responses appear to be attributable to the aboveground metallic items present.

The magnetic locator survey did not detect any large buried ferrous metallic objects in the survey area; only small items were detected. These small detected items were judged to be too small to be even a small UST, and their locations were not noted.

No GPR reflections consistent with those expected for a UST were detected by the GPR survey. GPR data appear to indicate a subsurface disturbed soil area in the location of the historical UST shown on Figure 2-1. This disturbed area has been interpreted as a GPR-inferred UST grave (an apparent backfilled area where it is believed that a UST had once been located and since removed). The location of the inferred UST grave is shown by a gray hatched polygon in Appendix A on Figure 2-3. Figure 2-4, in Appendix A, shows GPR data along two profiles crossing the inferred UST grave, and coordinates provided on each profile correspond to the survey grid coordinate system shown on the results figure (Figure 2-3). The top profile on Figure 2-4 (collected along the 20East or 20E survey line) appears to cross the UST grave along the longer axis of the disturbed area, and the bottom profile on the figure (collected along the 25North or 25N survey line) appears to cross the UST grave along the shorter axis of the disturbed area. Possible former sidewalls of the inferred UST excavation are annotated on both GPR profiles displayed on Figure 2-4, and interpreted subsurface utilities are labeled on the top profile of the figure.

NSA Crane SWMU 23 Field Report

> Revision: 0 Date: May 2014

A linear GPR anomaly has been interpreted as a possible utility along the northern edge of the survey area, and its location and approximate depth are shown on Figure 2-3. The interpreted gas line detected

area, and its location and approximate depth are shown on Figure 2-3. The interpreted gas line detected

by the EM61 survey was also detected with GPR, and the approximate depth of this gas line estimated from GPR data is also provided on Figure 2-3. Several small unidentified buried objects have also been

interpreted from GPR data, and their locations and approximate depths are also noted on Figure 2-3 by an

X symbol. None of the GPR reflections from these small unidentified buried objects appear to be close to

the size and shape typically expected for GPR reflections from a small to a large UST. No apparent UST

piping was observed during the geophysical survey.

Based on the results of the geophysical survey, it is concluded that no UST is currently located within the

surveyed area.

2.9 DEVIATIONS FROM THE SWMU 23 UFP-SAP/FTMR

Any deviations from the SWMU 23 UFP-SAP/FTMRs are explained below and summarized in Table 2-1 of

Appendix A:

• Sixteen surface soil samples, proposed in the UFP-SAP to be collected from 0 to 2 feet bgs, were

collected from shallower depths because refusal was encountered prior to 2 feet bgs (see Table 2-1

for sample IDs and associated sample collection depths).

The surface soil samples from borings 23SB024, 23SB025, and 23SB026, proposed in the UFP-SAP

to be collected from 0 to 2 feet bgs, were not collected because of the presence of gravel backfill

present from 0 to 4 feet bgs at these locations. Therefore, at each of these locations only subsurface

soil samples were collected.

Subsurface soil samples proposed in the UFP-SAP were not collected from 17 boring locations

(i.e., 23SB007 through 23SB023) because of refusal at less than 2 feet bgs.

Two subsurface soil sample locations (23SB030 and 23SB032), proposed in the FTMR to be collected

from 2 to 4 feet bgs, were collected from 2 to 3 feet bgs, because refusal was encountered prior to

4 feet bgs.

2.10 FIELD SAMPLE DOCUMENTATION

Sample documentation consisted of the completion of sample log sheets, chain-of-custody records, field

logbooks, and health and safety documentation. The sample log sheets contain information such as:

sample location and sample identification number; container requirements and analyses to be performed;

NSA Crane SWMU 23 Field Report Revision: 0

Date: May 2014

and sample type, time, and date. Any unusual circumstances encountered during sample collection were noted on the form. Sample log sheets can be found in Appendix A-1. Chain-of-custody forms (Appendix A-1) were used to track each sample from collection to receipt and analysis at the FBL.

2.11 SAMPLE HANDLING, PACKAGING, AND SHIPPING

Sample handling activities included field-related considerations concerning the selection of sample containers, allowable holding times, sample custody, and maintaining samples at the appropriate storage temperature. All sample containers shipped to the FBL were wrapped in bubble wrap and sealed in plastic bags to minimize the possibility of breakage and spillage during transport. The sample containers were then placed in a cooler lined with a large plastic garbage bag and covered with ice. A temperature blank was placed in each cooler prior to shipment. Coolers containing samples for VOC analysis also contained a trip blank. The plastic garbage bag was sealed with a knot, and the chain-of-custody form was sealed in a Ziploc bag and taped to the inside of the cooler lid. A signed and dated custody seal was applied to each end of the cooler and then covered with strapping tape to provide a tamper-evident seal. A FedEx air bill was applied to the shipping cooler. Tetra Tech maintained custody of the samples until they were relinquished to FedEx. The FedEx tracking number (air bill number) was recorded on the chain-of-custody form, and the sender's copy of the airbill was maintained for shipment tracking, if needed. All samples were shipped to the FBL for overnight delivery and were received within sample holding times.

2.12 QUALITY CONTROL SAMPLES

Quality Assurance/Quality Control (QA/QC) samples were generated and collected during sampling activities to monitor both field and lab procedures, in accordance with the approved SAP (Tetra Tech, 2012). QA/QC samples consisted of field duplicates, equipment rinsate blanks, trip blanks, and temperature blanks, and are described below.

- <u>Field Duplicates</u> consisted of a single sample split into two portions. Field duplicates were collected at the rate of 1 in 20 per media and analyses to assess the overall precision of the sampling and analysis program.
- Equipment Rinsate Blanks obtained under representative field conditions by collecting the rinse
 water generated by running analyte-free water through or over sample collection equipment after
 decontamination and before use. One equipment rinsate blank was collected per item of sampling
 equipment (e.g., auger bucket). Equipment rinsate blanks were analyzed for the same chemical
 constituents as the associated environmental samples.

NSA Crane SWMU 23 Field Report

> Revision: 0 Date: May 2014

<u>Trip Blanks</u> - used to determine whether contamination of VOC samples had occurred during transit or

storage. Trip blanks consisted of analyte-free water taken from the FBL to the site and returned to the

FBL. One trip blank was submitted to the FBL in each cooler that contained samples for VOC

analyses, and was analyzed for VOCs only.

<u>Temperature Blanks</u> - used to determine if samples were adequately cooled during shipment.

Temperature blanks consisted of analyte-free water poured into a clean sample container at the site

or supplied by the FBL. One temperature blank was submitted to the FBL in each cooler, and the

temperature was checked upon receipt at the FBL.

The QA/QC sample results were used in the analytical data validation process and the overall assessment

of the quality of the data.

2.13 DECONTAMINATION

The non-dedicated, non-disposable equipment (i.e., hand augers) involved in field sampling activities was

decontaminated before beginning work, between sample locations, and at the completion of field activities.

2.14 INVESTIGATION-DERIVED WASTE (IDW) HANDLING

The field investigation generated potentially contaminated wastes including personal protective equipment

(PPE) and decontamination fluids. Management of each residue was performed as follows:

PPE – All PPE were double bagged and placed in NSA Crane trash receptacles (i.e., dumpsters).

Sampling Equipment Decontamination Fluids - All equipment decontamination fluids were collected and

discharged to the NSA Crane permitted waste treatment plant.

Soil - All soil removed from a sample location that was not used as part of that sample was returned to its

original boring.

2.15 SITE MANAGEMENT AND FACILITY SUPPORT

The FOL was designated as the lead in coordinating all day-to-day activities during the investigation. The

FOL was responsible for ensuring that all field team members (including subcontractors) were familiar

with the approved SAP and the HASP in effect during this field investigation. Additionally, the FOL was

responsible for all sampling operations, QA/QC, field documentation requirements, and field change

NSA Crane SWMU 23 Field Report

Revision: 0 Date: May 2014

orders. The FOL reported to the Task Order Manager (TOM) on a daily basis regarding the status of

fieldwork.

All site preparation, mobilization/demobilization, and sampling activities were coordinated through NSA

Crane personnel through pre-visit communication, and meetings during the field work.

2.16 RECORDKEEPING

Records (i.e., field log book) were maintained for the daily activities that took place during this field investigation. Other records including sample log sheets and chain-of-custody forms were also

completed. Information recorded daily included field activities, weather conditions, identity and arrival and

departure times of personnel, management issues, etc. Copies of daily activity records are included in

Appendix A-1.

TABLE 2-1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 1 OF 17

		Planning Document	Sample Date	Sample Method	Analyses									
Sample Location	Sample ID				voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments	
	Soil Samples													
	23SS001-0002	SAP	10/07/12	DPT	Х	Х	Х	Х	Х	Х				
23SB001	23SS001-0204	Delineation Sample	5/23/14	DPT			х							
	23\$\$001-0406	Delineation Sample	5/23/14	DPT			Х							
	23SB001-1012	SAP	10/07/12	DPT	Х	Х	Х	Х						
	23SS002-0002	RFI	10/07/12	DPT	Х	Х	Х	Х	Х	Х				
23SB002	23SB002-0204	FTMR 2	3/26/14	DPT			Х							
2358002	23SB002-0406	FTMR 2	3/26/14	DPT			Х							
	23SB002-1012	RFI	10/07/12	DPT	Х	Х	Х	Х						
	23\$\$003-0002	SAP	10/07/12	DPT	Х	Х	Х	Х	Х	Х				
23SB003	23SB003-0204	FTMR 2	3/26/14	DPT			Х							
	23SB003-0406	FTMR 2	3/26/14	DPT			Х							
	23SB003-0810	SAP	10/07/12	DPT	Х	Х	Х	Х						

TABLE 2-1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 2 OF 17

				Sample Method	Analyses									
Sample Location	Sample ID	Planning Document	Sample Date		voc	TPH (GRO/ ERO/DRO)	PAH	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments	
	23SS004-0002	SAP	10/07/12	DPT	Х	Х	Х	Х	Х	Х				
2250004	23\$\$004-0204	Delineation Sample	5/23/14	DPT			Х							
23SB004	23\$\$004-0406	Delineation Sample	5/23/14	DPT			Х							
	23SB004-0810	SAP	10/07/12	DPT	Х	Χ	Х	Х						
23SB005	23\$\$005-0002	SAP	10/07/12	DPT	Х	Х	Х	Х	Х	Х				
2358005	23SB005-0810	SAP	10/07/12	DPT	Х	Х	Χ	Х						
	23SS006-0002	SAP	10/07/12	DPT	Х	Х	Χ	Х	Х	Х				
23SB006	23SB006-0608	SAP	10/07/12	DPT	Х	Х	Х	Х					Strong fuel –like odor	
23SB007	23\$\$007-0002	SAP	11/01/12	НА	х	Х	Х	×	х	х			Bedrock refusal at 1.8 ft bgs	
23SB008	23\$\$008-0002	SAP	11/01/12	НА	х	Х	Х	×	х	х			Bedrock refusal at 0.8 ft bgs	
23SB009	23\$\$009-0002	SAP	11/01/12	НА	Х	Х	Х	Х	Х	Х			Bedrock refusal at 1.2 ft bgs	

TABLE 2-1

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 3 OF 17

A									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
23SB010	23\$\$010-0002	SAP	11/01/12	НА	х	Х	х	Х	х	Х			Bedrock refusal at 1.6 ft bgs
23SB011	23SS011-0002	SAP	11/01/12	НА	х	х	х	X	х	x			Bedrock refusal at 1.8 ft bgs
23SB012	23SS012-0002	SAP	11/01/12	НА	Х	Х	Х	Х	Х	Х			
23SB013	23\$\$013-0002	SAP	11/01/12	НА	Х	х	Х	х	х	х			Bedrock refusal at 1.9 ft bgs
23SB014	23SS014-0002	SAP	10/31/12	НА	х	х	Х	Х	х	х			Bedrock refusal at 0.5 ft bgs
23SB015	23\$\$015-0002	SAP	10/31/12	НА	х	х	Х	Х	х	х			Bedrock refusal at 0.8 ft bgs
23SB016	23SS016-0002	SAP	10/31/12	НА	Х	X	Х	Х	Х	Х			Bedrock refusal at 0.3 ft bgs
23SB017	23\$\$017-0002	SAP	10/31/12	НА	Х	Х	Х	Х	х	Х			Bedrock refusal at 1.3 ft bgs

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 4 OF 17

									Ar	alyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	PAH	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
23SB018	23SS018-0002	SAP	11/01/12	НА	Х	Х	Х	Х	х	Х			Bedrock refusal at 1.6 ft bgs
23SB019	23SS019-0002	SAP	11/01/12	HA	Х	Х	Х	Χ	Х	Х			
23SB020	23\$\$020-0002	SAP	11/01/12	НА	Х	Х	Х	Х	х	Х			Bedrock refusal at 1.6 ft bgs
23SB021	23SS021-0002	SAP	11/01/12	HA	Х	Х	Х	Χ	Х	Х			
23SB022	23\$\$022-0002	SAP	11/01/12	НА	х	Х	х	Х	х	х			Bedrock refusal at 1.8 ft bgs
23SB023	23\$\$023-0002	SAP	11/01/12	HA	Х	Х	Х	Х	Х	Х			
23SB024	23SB024-0406	SAP	10/07/12	DPT	Х	Х	Х	Х	Х	Х			Gravel from 0 – 4 ft bgs
	23SB024-0608	SAP	10/07/12	DPT	Х	Х	Χ	Х	Х	Х			
23SB025	23SB025-0406	SAP	10/07/12	DPT	Х	Х	Х	Х	Х	Х			Gravel from 0 – 4 ft bgs
	23SB025-0608	SAP	10/07/12	DPT	Х	Х	Χ	Х	Х	Х			

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 5 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
23SB026	23SB026-0406	SAP	10/07/12	DPT	х	Х	х	Х	х	Х			Gravel from 0 – 4 ft bgs; strong fuel- like odor 4- 6 ft bgs
	23SB026-0608	SAP	10/07/12	DPT	х	х	х	X	х	х			Slight fuel- like odor 6- 8 ft bgs
23SB027	23SS027-0002	FTMR 1	05/18/13	DPT			Х						
2358027	23SB027-0204	FTMR 1	05/18/13	DPT			Χ						
23SB028	23\$\$028-0002	FTMR 1	05/18/13	DPT			Х						
2338026	23SB028-0204	FTMR 1	05/18/13	DPT			Х						
23SB029	23\$\$029-0002	FTMR 1	05/18/13	DPT			Х						
2338029	23SB029-0204	FTMR 1	05/18/13	DPT			Χ						
	23\$\$030-0002	FTMR 1	05/19/13	НА			Χ						
23SB030	23SB030-0204	FTMR 1	05/19/13	НА			Х						Refusal at 3 ft bgs
23SB031	23SS031-0002	FTMR 1	05/19/13	НА			Χ						Refusal at
2555551	23SB030-0204	FTMR 1				Sa	mple N	ot Collect	ted				1.5 ft bgs

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 6 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	PAH	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
	23\$\$032-0002	FTMR 1	05/19/13	HA			Х						
23SB032	23SB032-0204	FTMR 1	05/19/13	HA			Х						Refusal at 3 ft bgs
23SB033	23\$\$033-0002	FTMR 1	05/19/13	HA				Х					Refusal at
2336033	23SB033-0204	FTMR 1				Sa	mple N	ot Collect	ed				1 ft bgs
23SB034	23\$\$034-0002	FTMR 1	05/19/13	HA				Х					
2350034	23SB034-0204	FTMR 1	05/19/13	HA				Х					
23SB035	23\$\$035-0002	FTMR 1	05/19/13	HA				Х					Refusal at
2336033	23SB035-0204	FTMR 1				Sa	mple N	ot Collect	ed				1 ft bgs
23SB036	23\$\$036-0002	FTMR 1	05/19/13	HA				Х					
2336030	23SB036-0204	FTMR 1	05/19/13	HA				Х					
23SB037	23\$\$037-0002	FTMR 1	05/19/13	HA				Х					
2336037	23SB037-0204	FTMR 1	05/19/13	HA				Х					
23SB038	23SS038-0002	FTMR 2	03/28/14	HA				X ⁽²⁾					
23SB039	23\$\$039-0002	FTMR 2	03/28/14	HA				X ⁽²⁾					
23SB040	23SS040-0002	FTMR 2	03/28/14	НА				X ⁽²⁾					
23SB041	23SS041-0002	FTMR 2	03/28/14	НА				X ⁽²⁾					
23SB042	23\$\$042-0002	FTMR 2	03/28/14	HA				X ⁽²⁾					

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 7 OF 17

									Ar	alyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
23SB043	23\$\$043-0002	FTMR 2	03/28/14	НА				X ⁽²⁾					
23SB044	23SS044-0002	FTMR 2	03/28/14	HA				X ⁽²⁾					
23SB045	23SS045-0002	FTMR 2	03/28/14	HA				X ⁽²⁾					
23SB046	23SS046-0002	FTMR 2	03/28/14	НА				X ⁽²⁾					
23SB047	23SS047-0002	FTMR 2	03/28/14	НА				X ⁽²⁾					
	23SS048-0002	FTMR 2	03/26/14	HA			Х						
23SB048	23\$\$048-0204	Delineation Sample	5/23/14	DPT			х						
	23SS048-0406	Delineation Sample	5/23/14	DPT			Х						
23SB049	23SS049-0002	FTMR 2	03/21/14	НА			Х						
23SB050	23SS050-0002	FTMR 2	03/21/14	HA			Х						
23SB051	23SS051-0002	FTMR 2	03/21/14	HA			Х						
23SB052	23\$\$052-0002	FTMR 2	03/21/14	HA			Х						
23SB053	23\$\$053-0002	FTMR 2	03/21/14	HA			Х						
23SB054	23\$\$054-0002	FTMR 2	03/21/14	HA	-		Х				-		
23SB055	23\$\$055-0002	FTMR 2	03/21/14	HA	-		Х				-		
23SB056	23\$\$056-0002	FTMR 2	03/21/14	HA			Х						

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 8 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
23SB057	23\$\$057-0002	FTMR 2	03/21/14	НА			Х						
23SB058	23\$\$058-0002	FTMR 2	03/21/14	HA			Х						
	23\$\$059-0002	FTMR 2	03/21/14	HA			Х						
23SB059	23\$\$059-0204	Delineation Sample	05/23/14	НА			Х						
23SB060	23\$\$060-0002	FTMR 2	03/21/14	HA			Х						
23SB061	23\$\$061-0002	FTMR 2	03/21/14	HA		-	Х						
23SB062	23\$\$062-0002	FTMR 2	03/21/14	HA			Х						
	23SS063-0002	FTMR 2	03/26/14	HA			Х						
23SB063	23SB063-0204	FTMR 2	03/26/14	HA			Х						
	23SB063-0406	FTMR 2	03/26/14	HA			Х						
	23SS064-0002	FTMR 2	03/21/14	HA			Х						
23SB064	23SB064-0204	FTMR 2	03/21/14	HA			Х						
	23SB064-0406	FTMR 2	03/21/14	HA			Х						
23SB065	23SS065-0002	FTMR 2	03/21/14	HA			Х						
	23SS066-0002	FTMR 2	03/21/14	HA			Х						
23SB066	23SB066-0204	FTMR 2	03/21/14	HA	-		Х						
	23SB066-0406	FTMR 2	03/21/14	HA			Х						

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 9 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	PAH	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
	23\$\$067-0002	FTMR 2	03/21/14	HA			Х						
23SB067	23SB067-0204	FTMR 2	03/21/14	НА			Х						
	23SB067-0406	FTMR 2	03/21/14	HA			Х						
	23SS068-0002	FTMR 2	03/21/14	HA			Х						
23SB068	23SB068-0204	FTMR 2	03/21/14	HA	-	-	Х						
	23SB068-0406	FTMR 2	03/21/14	HA	-	-	Х						
	23\$\$069-0002	FTMR 2	03/21/14	НА	1	1	Х						
23SB069	23SB069-0204	FTMR 2	03/26/14	НА	1	1	Х						
	23SB069-0406	FTMR 2	03/26/14	HA	1	1	Х						
	23\$\$070-0002	FTMR 2	03/26/14	HA	1	1	Х						
23SB070	23SB070-0204	FTMR 2	03/26/14	HA	1	1	Х						
	23SB070-0406	FTMR 2	03/26/14	HA	1	1	Х						
	23\$\$071-0002	FTMR 2	03/26/14	HA	1	-	Х						
23SB071	23SB071-0204	FTMR 2	03/26/14	HA			Х						
	23SB071-0406	FTMR 2	03/26/14	HA			Х						
	23\$\$072-0002	FTMR 2	03/26/14	НА			Х						
23SB072	23SB072-0204	FTMR 2	03/26/14	HA	-		Х						
	23SB072-0406	FTMR 2	03/26/14	HA	-	-	Х						

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 10 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
	23\$\$073-0002	FTMR 2	03/26/14	HA			Х						
23SB073	23\$\$073-0204	Delineation Sample	5/23/14	DPT			Х						
	23\$\$073-0406	Delineation Sample	5/23/14	DPT			Х						
	23\$\$074-0002	FTMR 2	03/26/14	HA			Х						
23SB074	23SB074-0204	FTMR 2	03/26/14	HA			Х						
	23SB074-0406	FTMR 2	03/26/14	HA			Х						
	23SS075-0002	FTMR 2	03/26/14	HA			Х						
23SB075	23SB075-0204	FTMR 2	03/26/14	HA			Х						
	23SB075-0406	FTMR 2	03/26/14	HA			Х						
	23SS076-0002	FTMR 2	04/17/14	HA				X ⁽²⁾					
23SB076	23SB076-0203	FTMR 2	04/17/14	НА				X ⁽²⁾					Bedrock refusal at 1.5 feet bgs
23SB077	23SS077-0002	FTMR 2	04/17/14	HA				X ⁽²⁾					
23SB078	23\$\$078-0002	FTMR 2	04/17/14	НА				X ⁽²⁾					Bedrock refusal at 0.8 feet bgs

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 11 OF 17

									Ar	alyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
23SB079	23\$\$079-0002	FTMR 2	04/17/14	НА				X ⁽²⁾					Bedrock refusal at 1.4 feet bgs
23SB080	23\$\$080-0002	FTMR 2	04/17/14	НА				X ⁽²⁾					Bedrock refusal at 1.5 feet bgs
23SB081	23SS081-0002	FTMR 2	04/17/14	НА				X ⁽²⁾			1		Bedrock refusal at 0.8 feet bgs
23SB082	23SS082-0002	Delineation Sample	05/23/14	НА				X ⁽²⁾					Bedrock refusal at 1.5 feet bgs
	23\$\$083-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB083	23\$\$083-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$083-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 12 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
	23SS084-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB084	23\$\$084-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$084-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$085-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB085	23\$\$085-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$085-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$086-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB086	23\$\$086-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$086-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 13 OF 17

									Ar	alyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
	23SS087-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB087	23\$\$087-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$087-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$088-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB088	23\$\$088-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23SS088-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$089-0002	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
23SB089	23\$\$089-0204	Delineation Sample	05/23/14	DPT				X ⁽²⁾					
	23\$\$089-0406	Delineation Sample	05/23/14	DPT				X ⁽²⁾					

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 14 OF 17

									Ar	alyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
	23\$\$090-0002	Delineation Sample	05/23/14	DPT	-1		Х				1		
23SB090	23\$\$090-0204	Delineation Sample	05/23/14	DPT			Х						
	23\$\$090-0406	Delineation Sample	05/23/14	DPT			Х						
	23\$\$091-0002	Delineation Sample	05/23/14	DPT	1		Х				1		
23SB091	23\$\$091-0204	Delineation Sample	05/23/14	DPT			Х						
	23\$\$091-0002	Delineation Sample	05/23/14	DPT	1		X				1		
	23\$\$092-0204	Delineation Sample	05/23/14	DPT			Х	X ⁽²⁾					
23SB092	23\$\$092-0406	Delineation Sample	05/23/14	DPT			Х	X ⁽²⁾					
	23\$\$092-0002	Delineation Sample	05/23/14	DPT			Х	X ⁽²⁾					
	то	ΓALS			35	35	118	85	30	30	0	0	

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 15 OF 17

									Ar	nalyses			
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments
					Sedir	nent Samp	les						
23SW/SD001	23SD001-0006	SAP	10/08/12	PT	Х		Х	Х	Х		Х		None
23SW/SD002	23SD002-0006	SAP	10/08/12	PT	Х		Х	Х	Х		Х		None
23SW/SD003	23SD003-0006	SAP	10/08/12	PT	Х		Х	Х	Х		Х		None
23SW/SD004	23SD004-0006	SAP	10/08/12	PT	Х		Х	Х	Х		Х		None
23SW/SD005	23SD005-0006	SAP	10/08/12	PT	Х		Х	Х	Х		Х		None
23SW/SD006	23SD006-0006	SAP	10/08/12	PT	Х		Х	Х	Х		Х		None
23SD008	23SD008-0006	SAP	10/08/12	PT	х	Х	х	Х	х		х		Sample collected from 0 –4- inches below top of residue; strong fuel- like odor
23SD009	23SD009-0006	FTMR 1	5/19/13	PT	Х		Х	Х					None
	TO 1	ΓALS			8	1	8	8	8	0	7	0	

SAMPLE COLLECTION AND ANALYSIS SUMMARY **SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 16 OF 17**

						Analyses										
Sample Location	Sample ID	Planning Document	Sample Date	Sample Method	voc	TPH (GRO/ ERO/DRO)	РАН	Metals	РСВ	Sulfate/pH	тос	Hardness ⁽¹⁾	Comments			
				Sı	urface	Water Sar	nples									
23SW/SD001	23SW001	SAP	10/08/12	DF			Х	X ⁽³⁾				Х	None			
23SW/SD002	23SW002	SAP	10/08/12	DF			Х	X ⁽³⁾				Х	None			
23SW/SD003	23SW003	SAP	10/08/12	DF			Х	X ⁽³⁾				Х	None			
23SW/SD004	23SW004	SAP	10/08/12	DF			Х	X ⁽³⁾				Х	None			
23SW/SD005	23SW005	SAP	10/08/12	DF			Х	X ⁽³⁾				Х	None			
23SW/SD006	23SW006	SAP	10/08/12	DF			Х	X ⁽³⁾				Х	None			
	TOTALS						6	6	0	0	0	0				

-- - Parameter Not Analyzed

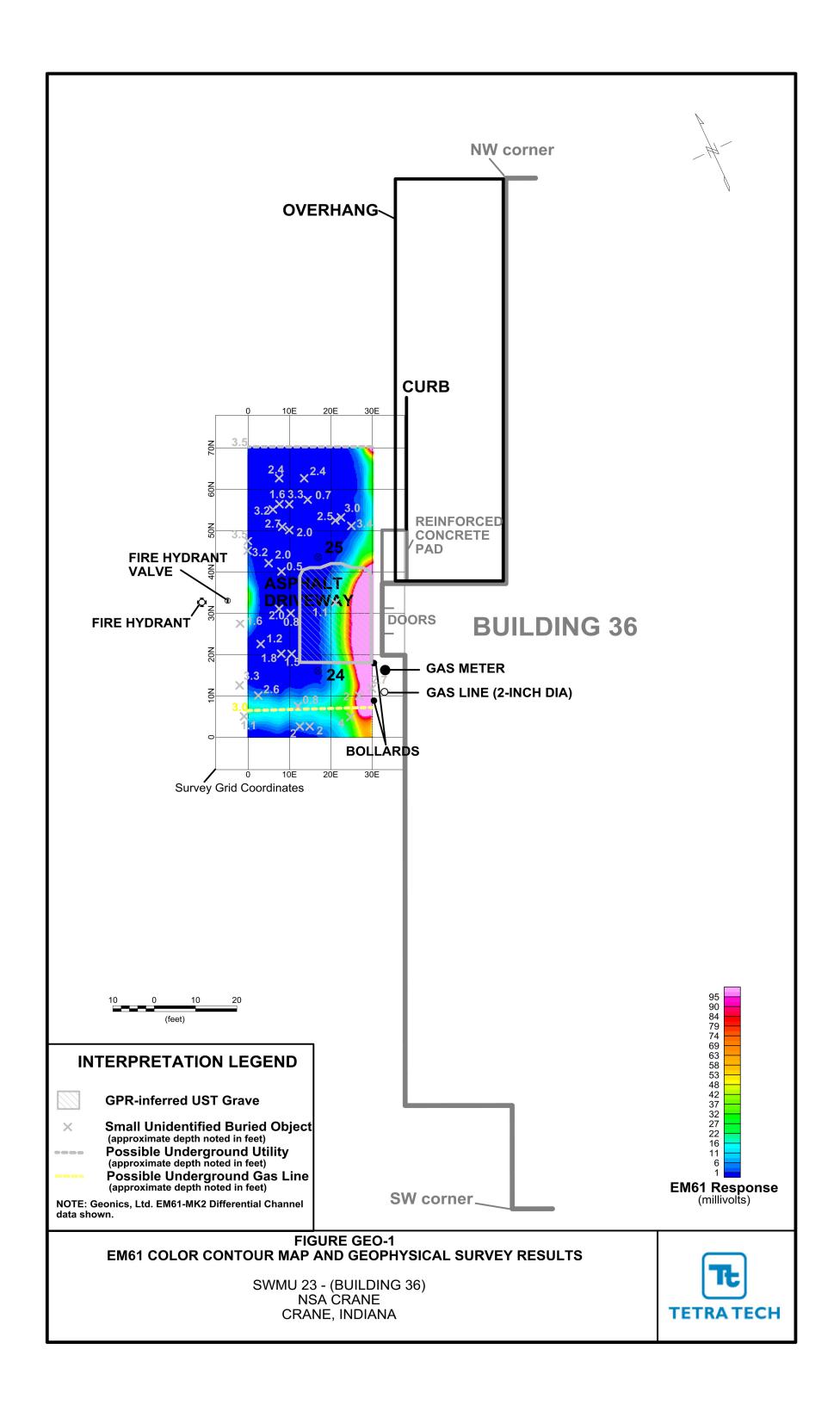
DF - Direct Fill

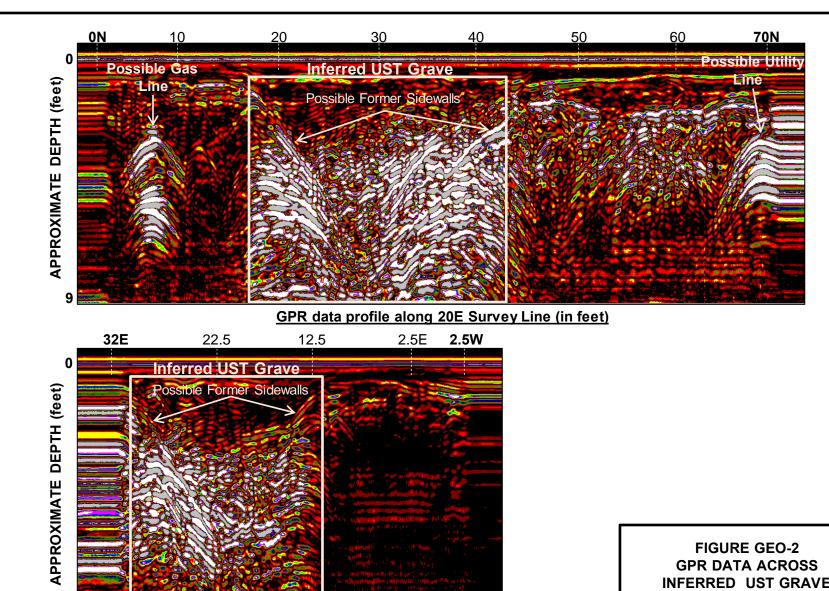
DPT - Direct-Push Technology

DRO - Diesel Range Organics ERO - Extended Range Organics

GRO – Gasoline Range Organics PAH - Polycyclic aromatic hydrocarbons

HA - Hand Auger PT - Plastic Trowel


PCB - Polychlorinated Biphenyl TOC – Total Organic carbon


TPH – Total petroleum hydrocarbons VOCs - Volatile Organic Compounds

ft bgs – feet below ground surface

SAMPLE COLLECTION AND ANALYSIS SUMMARY SWMU 23 – BATTERY SHOP BUILDING 36 NSA CRANE CRANE, INDIANA PAGE 17 OF 17

- (1) Hardness concentrations (as calcium carbonate) were calculated for each surface water sample based on the calcium and magnesium concentrations.
- (2) Pb Only
- (3) Surface water samples were analyzed for both total and dissolved metals. For filtered surface water samples for dissolved analyses, "-F" was added to the end of the ID number (e.g., 23SW001-F).

GPR data profile along 25N Survey Line (in feet)

FIGURE GEO-2
GPR DATA ACROSS
INFERRED UST GRAVE
SWMU 23 – (BUILDING 36)
NSA CRANE
CRANE, INDIANA

April 10, 2014

Project No. 2014-204-001

James Ferguson Tetra Tech NUS 661 Anderson Drive Foster Plaza 7 Pittsburgh, PA 15220

Transmittal Laboratory Test Results NSA Crane 1121606018

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted

David R. Backstrom Laboratory Director

Geetechnics Inc

We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

UNIT WEIGHT

(SOP - S37)

Client Client Reference

TETRA TECH

NSA CRANE 112I606018

Project No. Lab ID

2014-204-001 2014-204-001-001 Boring No.

72

Depth (ft) Sample No. SWMU-23

0-3

Recovery (ft) 2.3

	DESCRIPTION Black Sand	DESCRIPTION Brown Sand, some Clay, and Rock Fragments
MOISTURE CONTENT	Depth 2.5-2.9	Depth 1.5-2.0
Tare Number Wt. Tare & WS(gm.)	872	902
Wt. Tare & VS(gm.)	272.89	323.25
Wt. Tare(gm.)	267.70	314.34
Moisture Content(%)	110.59	110.70
molecule content (70)	3.30	4.38
UNIT WEIGHT		
W/t Mold & W/C (ama)		

UNIT WEIGHT		
Wt. Mold & WS.(gms.)	185.80	005.70
Wt. Of Mold(gms.)	21.81	235.70
Wt. Of WS.(gms.)	163.99	22.41
Length 1 (in.)	4.61	213.29
Length 2 (in.)	4.60	4.84
Length 3 (in.)		4.84
Top Diameter (in.)	4.60	4.83
Middle Diameter (in.)	1.27	1.27
Bottom Diameter (in.)	1.28	1.28
Sample Volume (cc)	1.28	1.26
	96.33	100.32
Moisture Content(%) Unit Wet Wt.(gms/cc)	3.30	4.38
	1.70	2.13
Unit Wet Wt.(pcf.)	106.2	132.7
Unit Dry Wt.(gms/cc)	1.65	2.04
Unit Dry Wt.(pcf.)	102.8	
		127.1

Tested By TRE Date 4/8/14 Checked By KC Date 4/10/14 page 1 of 1

DCN: CT-S37A DATE:9-05-07 REVISION: 1

UNIT WEIGHT

(SOP - S37)

Client

Lab ID

Client Reference Project No.

TETRA TECH

NSA CRANE 112I606018

2014-204-001

2014-204-001-002

Boring No.

72 Depth (ft) 3-6

Sample No. SWMU-23

Recovery (ft) 2.7

	DESCRIPTION Light Brown Silty Clay	DESCRIPTION Brown Clay
	Depth 5.2-5.6	Depth 3.6-4.0
MOISTURE CONTENT Tare Number Wt. Tare & WS(gm.) Wt. Tare & DS(gm.) Wt. Tare(gm.) Moisture Content(%)	565 282.09 252.70 82.88 17.31	589 242.49 208.55 82.86 27.00
UNIT WEIGHT Wt. Mold & WS.(gms.) Wt. Of Mold(gms.) Wt. Of WS.(gms.) Length 1 (in.) Length 2 (in.) Length 3 (in.) Top Diameter (in.) Middle Diameter (in.) Bottom Diameter (in.) Sample Volume (cc) Moisture Content(%) Unit Wet Wt.(gms/cc) Unit Dry Wt.(gms/cc) Unit Dry Wt.(gcf.)	220.99 20.26 200.73 4.51 4.53 4.53 1.29 1.29 1.28 96.41 17.31 2.08 129.9 1.77 110.8	178.29 17.92 160.37 4.07 4.07 4.09 1.29 1.28 1.28 86.37 27.00 1.86 115.9 1.46 91.2

Tested By	TRE	Date	4/8/14	Checked By	KC	Date	4/10/14
Tested By	TRE	Date	4/0/14	Oncorou by			

DCN: CT-S37A DATE:9-05-07 REVISION: 1 page 1 of 1

\\GEOSERVER\Data Drive\2014 GEOTECHNICAL PROJECTS\TETRA TECH\2014-204-001 NSA CRANE\Unit Wgts\\[2014-204-001-002 Unit Wgt. XLS\]Sheet1

Page __1_ of __

PROJECT NAME: NSA Crane SWMU 23
PROJECT NUMBER: 112G03539
DRILLING COMPANY: Geo Logic

BORING No.: 8 2353001
DATE: 1017 112
GEOLOGIST: K. Losekamp

	ORILLING COMPANY: Geo Logic ORILLING RIG: Geo Probe						DRILLER: Braidy Cockran							
					N	IATE	RIAL DESCRIPTION			PID/FI	D Rea	ding ([ppn	
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U s c s *	Remarks	Sample	Sampler BZ	Borehole***	Driller BZ***	
			3	_L'	Coose	gray	Some Sitt Sand Clar	SW	2 pustes					
		\angle					Some Silt sand ala	CC	for sample				L	
		/	/4	9			"All "		Unione				L	
		\angle	/_		*			ļ					Ļ	
	4											<u> </u>	Ļ	
			2/					-			_		Ļ	
			- /-						.			_	L	
		\leftarrow								_			H	
	4		/ 4					+					┝	
	U		11 1		SHFF	170 A	Gilty Sandviller	11					F	
			7/	_ 1	*****	Mer	Some gover	LL					┝	
			/	10					Strong feel				H	
			11				Black Staining/ discoloration of soil Sandy Clay		Strong frel Odor from				T	
	12		14	131	,		discoloration of soil		10.5-12.0				r	
			1.5/			BEN	Sandy Clay	14						
			J2.	L				<u> </u>		ļ		L	L	
		\angle		. 1				_					L	
	4	\angle	/	14	. (004/		<u> </u>		_	_		L	
				14,2	(trud	77	and wentered Sands	Hone		_	_	_	\downarrow	
		$\langle - \rangle$		EOB				-		\vdash	<u> </u>	\vdash	L	
								╂—	_	\vdash	-	<u> </u>	F	
	مادد	\leftarrow			-			\vdash		╀	-	\vdash	\vdash	
	16	<u> </u>	er rock bro					<u></u>						

					_
* When rock coring, enter rock	brokeness.				
** Include monitor reading in 6 f	foot intervals @ borehole	. Increase reading frequency	if elevated reponse read.	Drilling Area	
Remarks: Refusal at	14:2"			Background (ppm): N	ĪΑ
					_
Commend to Malli	Vaa	NI- ··	3A/-II i D. #.		
Converted to Well:	Yes	No <u>x</u>	Well I.D. #:		

Ľ		retra	a recn			<u>B(</u>	<u>DRING I</u>	LOG		Page)	1_ (of _	
PRC DRII	JECT LING	NAM NUM COM RIG:	BER:	NSA C 112GC Geo Lo Geo P	gic	VMU	23	BORING I DATE: GEOLOG DRILLER:	ST:	X. Losekamp Braidy Cockran				
					L N	IATE	RIAL DESC	RIPTION	T		PID/FIE	D Rea	ding (ppm)
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material	Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1			3.5				Aravel f	GII Some	ξW	Dry				
			137				Sand 15	fill some	eL	7	\Box	П		
		$ \ge $	/4.	þ	į									
5-2	5	-	3.0						-		-	\vdash		
5-4	5). °						╁		\vdash	\vdash		
			6						-		\vdash	\vdash		
			/4	U		_					\vdash	H		
			4.0/								H	\vdash		
	10		1					/						
			4.0		SK:Ff	BRA	1.511	ty Clay	u		П	П		
				الدا			Goore	ty lay	4					
			/ /	<u> </u>	•									
		\angle	4.0				 -		igsqcup		Ш	Ш		
	15		/4,0								Ш	Щ		
	-	-	1 0						_		<u> </u>	\square		
		-	-						.,		\square	$\vdash \vdash$		
\vdash		\leftarrow	4.0/	191					\vdash		\vdash	$\vdash \vdash$		-
-	20	-	(4)	201	Herd	gray	heathe	red Sands	470		H	$\vdash \vdash$	_	\dashv
	40			EOB		, Me	ye	3			H	H		\neg
								-			Н	\sqcap		
											П			
								· · · · · · · · · · · · · · · · · · ·			П	П		
	25	\angle												
			r rock bro g in 6 foot) borehole. Ir	ncrease	reading frequenc	y if elevated reponse	read.	Drillir	ng Ai	rea.		

* When rock coring, enter rock	brokeness.			11/2-	
** Include monitor reading in 6	foot intervals @ borehole.	Increase reading frequer	ncy if elevated reponse read.	Drilling Area	
Remarks: Refusal at	20'.0.	ms/msp	on Ord + 10-18	Background (ppm): NA	<u>\</u>
Converted to Well:	Yes	No x	Well I D #		-

Tetra Tech Page __1_ of __!_ **BORING LOG** BORING No.: <u>2358003</u> PROJECT NAME: NSA Crane SWMU 23 PROJECT NUMBER: 112G03539 DATE: 10/7/12 DRILLING COMPANY: Geo Logic GEOLOGIST: K. Losekamp **DRILLING RIG:** Geo Probe **Braidy Cockran** DRILLER: MATERIAL DESCRIPTION PID/FID Reading (ppm) Depth Blows / Sample Lithology Sampl e No. (Ft.) 6" or Change Recovery S Soil Density/ RQD (Depth/Ft.) and Sampler BZ Driller BZ** С Consistency Туре Run (%) Sample or Remarks Color or RQD No. Length Screened or **Material Classification** S Interval Rock Hardness 5-1 grave 1 a/ Coose DIY Silt sand and Clay 5-2 4.0 Silty 5-3 0

 $H_1 2a$

12.3

EOB

5-4

												1	
* When rock ** Include mo Remarks	nitor readir	ng in 6 foo		borehole.	Increase	reading freque	ency if eleva	ated reponse r	ead.	Drillir Background			NA
Converte	d to We	ell:	Yes		_	No <u>x</u>		Well I.C). #:		,,		

some

wentered Sandston

Sand

l	It	Tetra	Tech			BC	DRING	LC	OG	Page1_ of _ <u>l</u> _					
PRO	JECT	NAMI	Ε:	NSA C	rane SV	VMU	23		BORING N	o.:	2358004				
PRO	JECT	NUM	BER:	112G0	3539				DATE:		10/7 /12				
			PANY:	Geo Lo						ST:	K. Losekamp				
DRIL	LING	RIG:		Geo P					DRILLER:		Braidy Cockran				
Sampl	Depth	Blows /	Sample	Lithology	N	IATEI	RIAL DES	CRIP	TION	U		PID/FII	D Rea	ding (ppm)
e No.	(Ft.)	6" or RQD	Recovery	Change	Soil Density/	:				s					
Туре	Run	(%)	Sample	or	Consistency	Color	Mate	rial Clas	sification	C S	Remarks	Sample	Sampler BZ	Borehole**	Oriller BZ**
or RQD	NO.		Length	Screened Interval	Rock	00101	Water	iai Olas	sincation	*		San	amb	3orel	rille
					Hardness								່ຂ		
5-1			1.5/	2= - 25h2s	Coose	GAY	fil-9	sure!	w/silt, clay	ġω					
		$\overline{}$				t.									
<u> </u>															
	-		4.0									\vdash	-		
	4														
5-2			3.5												
			16.0					1							
	4		14.0					1	-						
5-3			3.0		SKFF	BLN	Sí H	4	Clay	U_					
								1							
			14.0												
	43														
6-4			[.5]				Moc	e Ši	an d		_				
				_			_								
			12.0.	dead		BEN	weate	red	Sandstone						
				19608											
	ilo														
* When	rock co	ring ente	er rock bro	keness											

when rock coming, enter rock brokeness.	
** Include monitor reading in 6 foot intervals	@ borehole. Increase reading frequency if elevated reponse re

ead. Remarks: Refusal at 14.0

Drilling Area Background (ppm):[ΝA

Converted to	o Well:	Yes	No) X	Well I.D. #:	

Tetra Tech Page __1_ of _ **BORING LOG** BORING No.: 5300 S NSA Crane SWMU 23 PROJECT NAME: 10/7/12 PROJECT NUMBER: 112G03539 DATE: DRILLING COMPANY: Geo Logic GEOLOGIST: K. Losekamp **DRILLING RIG:** Geo Probe **Braidy Cockran** DRILLER: MATERIAL DESCRIPTION PID/FID Reading (ppm) Lithology Sampl Depth Blows / Sample U e No. (Ft.) 6" or Recovery Change S Soil Density/ and RQD (Depth/Ft.) С Driller BZ** Consistency Type Run Sample or (%) Remarks Color **Material Classification** s or RQD Length Screened No. Rock Interval Hardness All-gracin/sit Boose gray 5-2

Ę

SEFF BEN

Hard

12'3"

EOB

8

12

5-3

5-4

	2					1						ш			
	`														
								4						Ī	
	20													İ	
		oring, ente			borehole. I	ncrease	e reading frequen	cy if elevated	reponse re	ead.	Drillin	ıg Aı	rea		
Rem	arks:	Refusa	al at 1	2,3.			e reading frequen		_		Background	(ppi	m):[NΑ
_					-							_			
Conv	erted	l to We	II:	Yes		-	No x		Well I.D). #:					

wenthere of Soundsto

Page __1_ of _[_

PROJECT NAME: NSA Crane SWMU 23
PROJECT NUMBER: 112G03539
DRILLING COMPANY: Geo Logic
DRILLING RIG: Geo Probe

BORING No.: 3513006
DATE: 60/7/12
GEOLOGIST: K. Losekamp
DRILLER: Braidy Cockran

DKIL	LING	RIG:		Geo P	lone			DRILLER:		Braidy Cockran				
					N	IATE	RIAL DESC	RIPTION		F	'ID/FII	D Read	ding (ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Materia	al Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
			ر آ		Coose	youy	E11-900	wel-Silt, Sund Clay	ga					
			α /				-							-
			/4											
	4							·						
			3.5	5.5										
				5 ,	£2FF	Real	16'1+.	1 Clay	LL	areunish Color				H
			14	9	2144 -	/~~)	7,(1)	Clay		Granish Color Strong fel Odor from				
<u> </u>	X	\angle	/							Odor from				
			4.4				•			6-8'				
											-			
		\angle	/4	3										
_	12													
<u> </u>				131	Horis	BRN	wentre	ed Scindstone						
			,	137" 137"										
	11													
	(6				<u></u>		·					H		
														Н
	20								_			H		
* \A/bas			r rock bro	liamana					l		Ļ_	Ш		Ш

* When rock coring, enter rock ** Include monitor reading in 6 f Remarks: Refusal at		ole. Increase reading frequency	if elevated reponse read.	Drilling Area Background (ppm):	N/
Converted to Well:	Yes	No x	Well I.D. #:		

Tetra Tech Page __1_ of _ ___ **BORING LOG** BORING No.: 2353024 NSA Crane SWMU 23 PROJECT NAME: PROJECT NUMBER: 112G03539 DATE: 10/17/12 GEOLOGIST: K. Losekamp DRILLING COMPANY: Geo Logic **DRILLING RIG:** Geo Probe **Braidy Cockran** DRILLER: MATERIAL DESCRIPTION PID/FID Reading (ppm) Sampl Depth Blows / Lithology Sample U e No. (Ft.) 6" or Recovery Change S (Depth/Ft.) Soil Density/ RQD Sampler BZ Driller BZ** C Consistency Type Run (%) Sample or Remarks Color **Material Classification** S or RQD Screened No. Length Rock Interval Hardness gray Growel Loose 3,0

Silty Clay

gray inentroped Sandstone

Stiff Ben

Hard

3.0

40 7'4"

7/81

	10												
** Includ	de moni	itor readin	er rock bro ig in 6 foot al at	intervals @) borehole. I	ncrease	reading fre	equency if ele	evated reponse r	ead.	Drillin Background		NA
Conv	erted	l to We	II:	Yes			No <u>x</u>		Well I.D). #: _			_

Page __1_ of __!__

PROJECT NAME: NSA Crane SWMU 23
PROJECT NUMBER: 112G03539
DRILLING COMPANY: Geo Logic
DRILLING RIG: Geo Probe

BORING No.: 2358025
DATE: 10/2 | 12
GEOLOGIST: K. Losekamp
DRILLER: Braidy Cockran

DKIL	LINC	1110.		Geor	1000		DRILLER:		Braidy Cockran				
					M	IATE	RIAL DESCRIPTION			PID/FII	D Rea	ding (ppm)
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1			2.5	5_			Aspna 1+	gu					
					loose	5~4	garel						
4				4	-								
		\angle	14.0										
	4	\angle		91									
5-2			4.0		stiff	13RN	Silty Clay	U		\bot	_		
-			·/										-
\vdash			-	7,4	Hwd	gray	0 10			+			
H	8		190	EOB E	Hovel	7 .47	weathered Sands	ب درام		+			
Н	8		1	EUD						+			
								 					
				1									
	12				,								
										ļ			
		\angle								_			Ш
								_			_		
	10	$\overline{}$						\vdash			-		Н
	16							\vdash		+		\vdash	dash
H								\vdash					H
H								\vdash		\dagger		H	\forall
				į.									П
	20												
			r rock bro	100 1000					2000				

When rock co	oring, enter rock b	rokeness.				
			e. Increase reading frequency	y if elevated reponse read.	Drilling Area	
Remarks:	Refusal at	7 '8''			Background (ppm):	NA
:						
Converted	to Well:	Yes	No x	Well I.D. #:		

Page __1_ of ____

PROJECT NAME: NSA Crane SWMU 23
PROJECT NUMBER: 112G03539
DRILLING COMPANY: Geo Logic
DRILLING RIG: Geo Probe

BORING No.: 23 58 02 6
DATE: 10 /11/2
K. Losekamp
DRILLER: Braidy Cockran

DKIL	LING	RIG:		Geo P	obe		DRILLER:		Braidy Cockran				
					M	IATE	RIAL DESCRIPTION		F	ID/FII	D Rea	ding ((ppm)
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1			2.5	1'	Hord	BIK	Asthalt	qu					
					Loose	white	Asphalt Grave (g w					
								1_					Ш
			14.0					_					
	4	\angle	•				V	<u> </u>					Ш
5-2		\angle	3.5		SKFF	BEN	Silty Clay	-	Strong fre 1 0 dor from 4-6				
-			/						0 dor tiom 4-6		Н		\vdash
\vdash			10					ļ <u>.</u>	Slight fielder		\vdash		\vdash
	8		4.0	ä					from 6-8				\vdash
5-3	0		3.21					 			Н		Н
Ť				3					No oder after 8'				
			/										П
			4.0	11'9"									
	12	\angle		-11	Hold	ORNG ORNG	Wenthered Sound Stone						
5-4		\angle		12'3"	•							_	Ц
		$/\!\!\!/$	-	÷				╀					Н
				3				-		<u> </u>		<u> </u>	Н
	i (-			1				+				<u> </u>	Н
	16							+					Н
				1									П
	20												
* Whor			r rock bro	kanaaa									

* When rock coring, enter rock ** Include monitor reading in 6 Remarks: Refusal at	foot intervals @ boreho	ole. Increase reading frequency if	elevated reponse read.	Drilling Area Background (ppm):	NA
Converted to Well:	Yes	No x	Well I.D. #:		

Page L of L

DRILLING COMPANY: TRIECO GEOLOGIST: CONTI DRILLING RIG: DT 54 DT DRILLER: D. SAMSEL Sample Depth No. (Ft.) 6" or Recovery Change Change Recovery Change Recov			NAME	Ξ: 3 ⊏ Ω·	NSA	MASS	<u> </u>		BORING N DATE:	o.:	2358027				
DRILLENG RIG: DT SAMSEL DRILLER: D. SAMSEL D. SAMSEL D. SAMSEL D. SAMSEL MATERIAL DESCRIPTION U. SAMSEL MATERIAL DESCRIPTION U. SAMSEL MATERIAL DESCRIPTION U. SAMSEL MATERIAL DESCRIPTION U. SAMSEL D. SAMSEL MATERIAL DESCRIPTION U. SAMSEL MATERIAL DESCRIPTION U. SAMSEL MATERIAL DESCRIPTION U. SAMSEL Remarks D. SAMSEL Remarks Remarks D. SAMSEL Remarks Remarks D. SAMSEL Remarks Remarks D. SAMSEL Remarks Remarks Remarks D. SAMSEL Remarks R				PANY:	TRIE	i eco			GEOLOGIS	ST:	5118113 CONTI				
Semple Equity Blower Semple Charge Semple Charge DRIL	LING	RIG:				1		DRILLER:							
No. (Fi) of or found found or found found or found						l N	1ATE	RIAL DESCRIPT	ION			PID/FII	D Rea	ding ((ppm)
1930 3.8/4 2 TOOK FRES (0002) 572 1435 4 H CLAYEY SILTY/SILTY CL CLAY TOOKS MU (0.204) MOIST O FILL TO When rock coring, enter rock brokeness. **Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area	No. and Type or	(Ft.) or Run	6" or RQD	Recovery / Sample	Change (Depth/Ft.) or Screened	Consistency or Rock	Color	Material Class	ification	S C	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
1930 3.8/4 2 TOOK FRES (0002) 572 1435 4 H CLAYEY SILTY/SILTY CL CLAY TOOKS MU (0.204) MOIST O FILL TO When rock coring, enter rock brokeness. **Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area	5-1					STIFF	GAY	CLAYEY SILT	- GRAFI	ML	DAMP	0			
STIFF BPN CLAYEY SILTY (SILTY CLAY ROCKS MU (6 204) MOIST O The Clay Rocks Mu (6 204) MOIST O FILL The Clay Rocks Mu	6			3.8/4	2	1		TIME	EPICC		/ ~				
*When rock coring, enter rock brokeness. *Include monitor reading in 6 foot intervals & borehole. Increase reading frequency if elevated reponse read. Drilling Area					1	STIFF	Ben	CLAYEY SII	TYISHIY	cı	000-)				
*When rock coring, enter rock brokeness. *Include monitor reading in 6 foot intervals & borehole. Increase reading frequency if elevated reponse read. Drilling Area	1435	4						CLAY R	OCKS !	MI	(0204) MOIST	0	П		
*When rock coring, enter rock brokeness. *Include monitor reading in 6 foot Intervals & borehole. Increase reading frequency if elevated reponse read. Drilling Area									(FILL)				П		
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area					1										
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area					1							П			
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area		·												П	
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area												П	П		
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area													П		
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area			\angle					<u> </u>							
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area			<u>/,</u>												
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area					i.								Ш		
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area	1115			100000											
Converted to Well: Yes No Well ID #: NA	** Includ Rema	de moni arks:	itor readin	g in 6 foo	t intervals (borehole. I	ncrease				Background			C	<u>)</u>

Converted to Well:

Yes

BORING LOG

Page ___ of ___

PROJECT NAME: NSA CRANE BORING No.: PROJECT NUMBER: DATE: DRILLING COMPANY: -GEOLOGIST: TRI ECO CONTL **DRILLING RIG:** DPI 54 DT DRILLER: D SAMSEL MATERIAL DESCRIPTION PID/FID Reading (ppm) Depth Lithology Blows / Sample U No. (Ft.) 6" or Recovery Change S Soil Density/ and RQD (Depth/Ft.) Borehole** BZ** C Run Sample Consistency Type or Remarks Color RQD Length Screened or **Material Classification** S Interval Rock Hardness DENSE PRAY CLAY, SILT, GRAVEL DAMP **(** 4/4 @ 1440 SHFF GRAY (0204) MOST 1445 CLAYEY SIUT-TR H TD * When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. **Drilling Area** Remarks: Background (ppm):

No

Well I.D. #:

NA

Page <u></u> of <u></u>

PRO DRIL	JECT LING	NAMI NUMI COMI RIG:	BER:	UI2 TRI	GO 35 ECO	239 DT		DATE: GEOLOGIS DRILLER:		2350029 5118113 CONT 1 D SAMSEL				
Sample No.	Depth (Ft.)	Blows / 6" or	Sample Recovery		N		RIAL DESCRIPT		U S		PID/FI	D Rea	ding ((ppm)
and Type or RQD	No.	RQD (%)	/ Sample Length	(Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Class	ification	CS	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
S-1	0				STIFF	GEZY	CLAY, SILT-	GRAVEL	ML	(0002) DAMP	0			
1450		/	9 E.	(2)		ТО	TO	-		1				
<u>S-2</u>	4	/	3-5/4	0		(JEAN	TR DK GRAYS	-TIZ ROOK	CL	MOIST				_
1455				41	:	BRN		~ 3.8		(0204)		-		_
				TD						SUGLAT				
		\angle								BURNT MATCH TYPE SMELL.				
		-												<u> </u>
		$\overline{}$												
							38							
		-												_
														-
		\angle												
_		/										Щ		
														H
		/						··-					 .	
								<u>~</u>						
								<u></u>				H		
	de mon		er rock bro		borehole. i	ncrease	reading frequency if el	evated reponse r	ead.	Drillin Background			Ć	>
Conv	erted	to We	II:	Yes			No V	Well I.D). #:	NA-				

TŁ	Tetra Tech

Page ___ of ___ **BORING LOG** BORING No.: 2358002 PROJECT NAME: NSA CAMIE SWMUJZ 1121G06018 PROJECT NUMBER: DATE: 3-26-14 GEOLOGIST: FERENSON **DRILLING COMPANY:** CIMISE **DRILLING RIG:** DRILLER: GEOPROBE FERREE MATERIAL DESCRIPTION PID/FID Reading (ppm) Lithology Blows / Sample Sample Depth U No. and (Ft.) 6" or Recovery / Change S Soil Density/ Type or RQD Sample (Depth/Ft.) Borehole** BZ** C Consistency RQD Length Run (%) Remarks or Color **Material Classification** S No. Screened Rock Interval Hardness GRAZ JUST FL LS GRAVEL 30 32 16:24 Gran CLAYEY F- 6 grant and 2358002-0304 -BrM 6104grovelly (F-C) (LMY. 2-3 Bom Gray 3-4 BOW aka 2338002-0406 50 GRAG 1,0 CLAY, TRACE AN 5-6 Sme !

** Include monitor reading in 6 fo Remarks:	Drilling Area Background (ppm):			
Converted to Well:	Yes	No	Well I.D. #:	

Tŧ	Tetra Tech

D	- 4	
Page	of	

PROJECT NAME: PROJECT NUMBER: **DRILLING COMPANY:** A CRANE SWMU23 G06018

BORING No.: 3358003

DATE: **GEOLOGIST:**

DRILLING BIG

Converted to Well:

Yes

DRILLER.

Sample No. and Type or RQD	Depth (FL) or Run No.	Diam's	Severte	Lithology Change (Depth/Ft.) or Screened Interval	MA	ATER	IAL DESCRIPTION		PID/FID Reading (p				(ppn
		Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1	0-1	/	40/			6 RW	Sney I. L LS GAME	Cit	16:14				
	トユ	\angle	/			Bon	Sury E. C L'S GRAVER SILTY, CLAY, TAMIS -1, H/c f. C L'S grad, morst, bill						
	3 -3	/,	/_	Č.		Bom	-1. Hle f. 6 15						
	3-4	\angle	1 4,0			Bran	grad, moist, bill		2328003-030	ч		13000	
	4-5	\angle				Bran		-		- 0	198211		
5.)	5-6	< >	10/10	1000		Bon	1 1/		2338003-040	6	H	7	
-		$\langle - \rangle$											
		$\overline{}$						-		_			╀
		-											-
								1					-
										-	-	_	┢
W T		$\overline{}$								-			
		$\overline{}$											
													\vdash
			E E										
					MI ITHE								
14	7.4	4				WHI	and ov Way, Yough	_			_		
N. J		4	NE .				hu=bra L						-
									× × × × × × × × × × × × × × × × × × ×	_	-		1
- 13	111111111111111111111111111111111111111							c.	- 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -				

No

Well I.D. #:

FŁ	Tetra Tech
0.00	

Dage	of
Page_	01

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG: 1121G06018

GEOFFUBE

BORING No.: 2358048

DATE: 3-26-14
GEOLOGIST: FORWSOM

DRILLER: N. FERRET

					M/	ATER	IAL DESCRIPTION			PID/FID Readir		ding (ppm
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		U S C S +	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1	0-1		2.75		. ,	BON	dues Car Serve	14	15130				
	1-2	7				BIN	Siest, CLAY, TERE- Little fue wedown god, gray notting,	14	2338048-000		11		
J- 11.7	2-3		3.0			00	and any nottles	ci	333098-000		-	-	
				Yoreli		7/)	neo ist				1		
-	,						pas is:					1	lic
TV IR											G-1867		
				4									
77-11								П				-	
,								_					
	-111						****					U IUIIS	
								Г					
						,					-		-1.7
											Silve	0.852	-41-2
	oult				-			 					
								H		1			
	1111				,								
												,	
-											-		
			11.00 V			2 1 4						-	
								-			,		
								-		-		-	
When ro	ck corir	ng, enter r	rock brokene	ss.		-					-		

When rock coring, enter rock by Include monitor reading in 6 fo Remarks:		crease reading frequency if elevate	ed reponse read.	Drilling Area Background (ppm):
Converted to Well:	Yes	No	Well I.D. #:	

Æ	Tetra Tech

Page	of
raye	01

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG: NSA CAMIE SISMUJ3 1121G06018

GOPROBE

BORING No.: 2358063

DATE: 3-26-14

GEOLOGIST: FORWARD

DRILLER: NJ. FORME

					M/	ATER	IAL DE	SCRIPTIO	N		P		PID/FID Reading (ppm)			
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Ma	terial Classific	ation	0 s c s *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	
5-1	0-1		3.75 /			Brat-	CATES	F-C Ms.	boul	6C))))					
	1-2					Brown	SILTY	. Genell	4 (Fe)	u	2358063-00	02				
	9.3					Bom	Liny	MOIST	FILL	cL				111 8		
	3-4		140			Brem	j			и	03 3B063-02	04				
52	4-5		2.0 /			Bum		1.32	FO	CL)					
	5-6	\angle	19.0			Brown			V	u	2338063-040	6				
		/														
		4	200				Don't same									
		\angle		4												
		\angle				45.00				-						
		\leftarrow	41.1													
		-		2 11/4/11								\vdash				
		<				0)		* ***					-			
		$\overline{}$										-				
										,		H				
		\leftarrow								-						
													-			
	TIL M		n_001 - 388											Н		
								A DESTRUCTION								
	0 1/25															
										-						
														Н		
								in the same of the same								
					NATIONAL PROPERTY.											

* When rock coring, enter rock b** Include monitor reading in 6 for	Drilling Area			
Remarks:			Background (ppm):	
Converted to Well:	Yes	No	Well I.D. #:	

Tetra Tech Page ___ of ___ **BORING LOG** N3A Exame Swm0 23 1121G06018 BORING No.: 2358069 PROJECT NAME: DATE: PROJECT NUMBER: 3-26-14 GEOLOGIST: FERGUSON **DRILLING COMPANY:** P. WASE **DRILLING RIG:** GEOPROBL DRILLER: Terret MATERIAL DESCRIPTION PID/FID Reading (ppm) Sample Depth Blows / Sample Lithology U No. and 6" or Recovery / Change (Ft.) S RQD (Depth/Ft.) Soil Density/ Sample Type or Of Borehole** C **Driller BZ*** ROD Consistency Run (%) Length Remarks or Color **Material Classification** S OF No. Screened Rock Interval Hardness 6-1 Silvy, Fil Capul 16:24 64 2358069-0003 CRNG 2-3 LL Bon OKNE 4,6 a 331BO69-0204 3.4 Bir CKUY CL BM colony 20 14 5.6 2358069-0406 (H)

* When rock coring, enter rock bi ** Include monitor reading in 6 fo		crease reading frequency if elev	ated reponse read.	Drilling Area
Remarks:				Background (ppm):
Converted to Well:	Yes	No	Well I.D. #:	

Æ	Tetra Tech

Dogo	of
Page	of

PROJECT NAME:
PROJECT NUMBER:
DRILLING COMPANY:
DRILLING RIG:

DRILLING RIG:

**DRILL

BORING No.: 23513670

DATE: 3-26-2014

GEOLOGIST: FENEUSUM

DRILLER: N. FININEE

			MATERIAL DESCRIPTION					PID/FID Reading (ppm)					
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	0 % 0 % *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1	8-1	\angle	3.5			Ery	5. Hy F. b my 15 Grad	вш	16:34				ш
	1-2	\angle				13%	Silty Fel my 15 God Serry Fel 65 Cool Serry, Sound (F) CLOS, Tros - 1Hle	GC.	2355070-000:	2	H	1	
	2-3	/				Ban	Secry, Sandy (F)	CL					
	34		1 4.0			CHNG	CLASS, Trass- LHIE	17.7	2358670-0704	1	H		
50	45		1.8			120	fel my grant	CL		адр			
	5-6	$\overline{}$	12.0	ann e		BA	moist (lill)	CC	2358070-040	61	H	_	
		$\overline{}$						-			-		-
		$\overline{}$						-	<u> </u>				
			11 - 1					Т			H		

					,								
												2112	
													1
			<u> </u>										
									No.				
										L	L		
			<u> </u>					-		-			
										-	-		Н
											70		H

*When rock coring, enter rock brokeness.

**Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

**Remarks:

Converted to Well: Yes ____ No ___ Well I.D. #:_____

Æ	Tetra Tech
المستقطال	

Page	of
. ~9~	

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG:

NSA	CRANIE	SWMU23
112IG	06018	
CH	136	

BORING No.: 3358671

DATE: 9-26-3014

GEOLOGIST: FEROUSON

DRILLER:

				William L.	M/	TER	IAL DESCRIPTION			PID/FID Readi			ing (ppm)	
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		១ ១ ១ *	Remarks		Sampler BZ	Borehole**	Driller BZ**	
5-1	0-1		4.0 /			Gum	Surv F-C me lus	GM	16109					
			1			bear	1.3 cml mant	Gin		_	51/2-2			
	2-3		/			EMN	Survey Sand (5)	a	7,55071 000					
	3-4		/ 4.0			Gray	from Your 1.41	CZ	2358071-0204	,				
5-)	4-5		10/			Gapa	fel mayles carel	el	730011 040					
-	56		/20			izery -130	Sicry F-C, maylus L5 youk, mont Sicry, Sondy (F) LAY, YAME-little F-C myulus grad, mont	66	2358071-040	01	1)			
	-		7 810	N n i i										
				8										
						Fil								
		/						2						
			,											
77			, ,											
			, , , , ,											
116														
				e i	7 20 122									

* When rock coring, enter rock br ** Include monitor reading in 6 for Remarks:	Drilling Area Background (ppm):			
Converted to Well:	Yes	No	Well I.D. #:	

TŁ	Tetra Tech

_		
Page	of	

PROJECT NAME: NSA CRAME SUMU 23
PROJECT NUMBER: 112IG06018
DRILLING COMPANY: CHASE
DRILLING RIG: GEORGE
DRICE
DRIC

BORING No.: 2358072

DATE: 3-26-2014

GEOLOGIST: FELGUSGIS

DRILLER: N. Forget

					M	ATER	IAL DESCRIPTION				PID/FID Reading (ppm)					
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**			
3-1	6-1		3,5			GAN	South Char Hoye Sells true for ing, and, South Char, Tre-1. HIL For good, worst	GM	15:59	II.						
	1-2					GALL		C/June	2355072-0002	(4)						
	9.3	\angle				GAA! BUAL	Sivi Chyr Hory Sills	Ly								
	3-4	\angle	4.0			Gray. Bunk	true for ing and.	Cym	2358072-0204	(4)						
3.2	4-5	\angle	1.5			0.74g	SINTY. CHAS, TR-1.HI.	CL					110			
	5-6	/	2.0			BANG	For good, worst	EL	2358072-0406	14						
		\angle														
		4														
pr Start	73	\angle										// <u> </u>				
		-								-			_			
		//						-		-		157				
		< >						-		+						
	_									+			_			
		$\overline{}$														
		\leftarrow						271.00	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							
								TEMP								
	74				TET DE								Н			
											714					
												JVIII				
y Ty					1 112											
									Control - La son House of Land Section 1985							

When rock coring, enter rock b Include monitor reading in 6 fo Remarks:	Drilling Area Background (ppm):			
Converted to Well:	Yes	No	Well I.D. #:	

T _t	Tetra Tech

	t	Tetra	a Tech		BC	RI	NG LOG		Pag	e _	'	of _	
PROJ	ECT ING	NAME: NUMB COMP. RIG:	ER:	NSA CAM 1121G060 CIMSE CEUTEUS	118 35	mu) ;	BORING DATE: GEOLO DRILLEI	GIST	: 2358073 3-26-14 : FERRUSON M. FERREZ		77		
Sample	Donth	Blows /	Sample	Lithology	M/	ATER	IAL DESCRIPTION	١		PID/FII	Rea	ding ((ppm)
No. and Type or RQD	Depth (Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U s c s ·	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1	6-1	Z	2.75/			CARY	Lloyey F-l Casal	6C	mus 15:53				
	1-2	\angle	/			Bam	Sury Cray most.		3355071-00007				
	2-3 3-4 4-5		/ 30			Bn	Sury Cray must. Time - little F-C quel, mast.		billhativilletas				
	5-6								issabyloyou				
		$ \ge $											
		4									Н		
		-											
					111111111								
	1	4						-			200		Ш
		$\overline{}$	WANT S			81 15							
						T							
		\angle											
		\leq								H			3 11
		-			X III N						-		3-1
		/		75-74									
		/	TY THE										
	10	\angle						0116					
	1	4	07123727										
1 When r	ank oori		rock brokene							L			

** Include monitor reading in 6 for Remarks:	Drilling Area Background (ppm):			
Converted to Well:	Yes	No	Well I.D. #:	

Tt	Tetra Tech

-	
Page	of _

PROJECT NAME: PROJECT NUMBER: **DRILLING COMPANY:** DRILLING RIG:

NSA BRAYE SWMUJ3 1121G06018 CHASE

BORING No.: 235B074 DATE: GEOLOGIST: LENOUSON

DRILL	ING	RIG:		600	ROBE			DRIL	LER:	N.	terre				
					M	ATER	IAL DESC	RIPTION				PID/FI	D Res	ding ((ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		I Classification	U S C S *	Re	emarks	Sample	Sampler BZ	Borehole**	Driller BZ**
54	0.1	\angle	3.5			Gry Bm	Unyey K.	Cipaul Comy how d, moist	60	15:4	4				0
	1-2	4			<u></u>	Bam	Siery,	Curry hor	1 21	23550	74-00	00			
	23	-	140			Brun	En Sm	d, moist	u						
5-7			1.8/			Brus	1/	- V	ic ic	735	074-00	04	H		
	51	<	120			orng Ba	Silly.	Ciny to	ne li	2356	3674-0	406	(4))	
		4					And good	Ciny to							
		\leftarrow											-		_
		$\overline{}$					Will had						\vdash		
	10 000														
		\angle				11.1	+ 3.4								
	-	$\langle \cdot \rangle$	===									-	-		_
												-			
T I															
		\angle					70.50			RIOS CASTACAS					
		4							34-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				-		
													-		
													-		
							E-FESSON								
													-		
* When m	ck corin	o enter n	ock brokenes	ie.		-									

** Include monitor reading in 6 fo Remarks:		Drilling Area Background (ppm):		
Converted to Well:	Yes	No	Well I.D. #:	

O.	
Tt	Tetra Tech

Page	of
1 ago	

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG: NSA CREATE SWMUD3. 1121G06018

GGOPROBE

BORING No.: 3358075

DATE: 3-36-14

GEOLOGIST: FALUSAN

DRILLER: N. FARRE

5-1 0-1 2.8 6can 5/hy fil paggare am 1-2 6can 5/hy fil paggare am 6can 5/hy filmay fil paggare am 6can 5/hy filmay fil paggare am 6can 5/hy filmay	PID/FID Reading (ppm				
5-2 4.5 2.0 Br. Sicry Cray CL	Sampler BZ	Borehole**	Driller BZ**		
5-2 4-5 20 Br Sicry Cray GLAS 61233B075-0209 (1			. 22		
5-2 4.5 2.0 Br. Sicry Cray CL	4				
5-2 4.5 2.0 Bu Sicry Cray girl (2)					
5-2 4.5 2.0 Bm Sich Cay girl CL	H	118			
5.6 / 3.0 Gent mottles, most 21 2358075-0406 &					
	4)				
	1				
	4				
	_				
	+				
	+				
	4		_		
	+		_		
	+				
	-		_		
	+				
	+				
	+		_		
	+	-			
	+	_	_		
	+	_	_		
	+		_		
	+		_		
	+				

* When rock coring, enter rock bi	rokeness.			
** Include monitor reading in 6 for	ot intervals @ borehole. Ir	crease reading frequency if ele	vated reponse read.	Drilling Area
Remarks:				Background (ppm):
Converted to Well:	Yes	No	Well I.D. #:	

LIT	5	Tet	ra Tech	1	во	RING	LOG		Page _1_ of _1	_
PROJEC	CT NAM	E:		NSA Cran	e - SWMU 23		BORING No).:	<i>58 038</i>	
PROJE	CT NUM	BER:		112IG060	18	data-	DATE:		MARCH 28, 2014	_
DRILLING COMPANY:			Chase			GEOLOGIS	T:	J. Ferguson		
DRILLIN	IG RIG:			Geoprobe			DRILLER:		Nathan Ferree	_
Commis.	Denth	Diame (Co1-	l Mhalassa		MATERI	AL DESCRIPTION			_
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistency or Rock Hardness		Material Classification	U	Remarks	
	0 - 1	-	-		300	BUNK -Brown	Sandy (Fre) SILT AND SILTY, Fre SAND, MOIST	SMI	13:35	
	1 - 2	-	-			Bunk- Brom	SILTY Fun Sand MOIST	5 mg	2335-038-0002	
	2 -3									
	3 - 4							ļ		
	4-5									_
	5 - 6 6 - 7									_
-	7-8									-
	8-9									4
	9 - 10									4
										-
										1
										-
				ļ						4
				ŀ						4
		-								$rac{1}{2}$
										$\frac{1}{2}$
				ŀ						$\left\{ \right.$
				ŀ						$\frac{1}{2}$
Remarks	: ,	Herri	d myn	boring	ar sug	ec non	thwest of building	36		

Remarks:	thend ough	boring	are super 10	thurst	of	building 36	
Converted to W	/ell:	Yes		No	У	Well I.D. #:	

T		Tet	tra Tech	1	<u>B0</u>	RING	<u>LOG</u>		Page _1_ of _1_
PROJE	CT NAM	Æ:			ie - SWMU 23	3	BORING No	:	58039
PROJE	CT NUM	BER:		112IG060	18		DATE:		MMLH 28 7014
	NG COM		ı	Chase			GEOLOGIS'	T:	J. Ferguson
DRILLIN	IG RIG:			Geoprobe			DRILLER:		Nathan Ferree
Sample	Depth	Blows /	Sample	Lithology		MATER	IAL DESCRIPTION	Γ., Ι	
No. and Type or RQD	(Ft.) or Run No.	6" or RQD	Recovery / Sample Length		Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U % C % *	Remarks
5-1	0 - 1	1			SOFT	Beauth- Beau	Samp, (F) JUS and	MISM	13:45
	1 - 2					BLMK	Soundy (F) FILT and SILTY For Fond, Frank In grant	ml/sm	2355039 0002
	2-3		<u> </u>			<u> </u>	Ene grant		
	3-4					ļ	,		
	4-5					 			
	5-6					-			
	6-7								= =
	7-8	\vdash							
	8-9					ļ'			
	9 - 10								
	 								
									
		 							
		\vdash							
-									
				ļ					

Remarks:	Honed	Augu b	acing	on slone	north w	est al l	rulding 36	- 00
,	Section 1995					0		
Converted to W	eli:	Yes			No _	×	Well I.D. #:	

Tetra Tech

BORING LOG

	<u> DOMINA EGA</u>			
PROJECT NAME:	NSA Crane - SWMU 23	BORING No.:	38040	
PROJECT NUMBER:	112IG06018	DATE:	MHRCH 28,2014	
DRILLING COMPANY:	Chase	GEOLOGIST:	J. Ferguson	
DRILLING RIG:	Geoprobe	DRILLER:	Nathan Ferree	

DRILLIN	IG RIG:			Geoprobe			DRILLER:		Nathan Ferree
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	AL DESCRIPTION Material Classification	U S C S	Remarks
3-1	0 - 1	_	1		soft	BLACK-	Sondy (F) SINT And Sondy (F) LLAY, MOIST	Mele	15:34
	1 - 2	1	-			Brown	Jandy (F) LLAY, MOIST	1/61	2355040-0002
	2 -3								
	3-4								
	4-5 5-6								
-	6-7								
	7-8								
	8 - 9								
	9 - 10								
						·-·			
				15					
						,			
				ŀ					
					-				
				ŀ					
									1

Remarks:	thand	Augu	borna	on stope	north	est of B	Pulden 36	 7-0
	7						0	
Converted to W	eli:	Yes			No _	×	Well I.D. #:_	

PROJEC PROJEC	CT NAM	E:			e - SWMU 23	RING	LOG			Page _1_ of _1_	
DRILLIN				Chase				_ GEOLOGIST:		J. Ferguson	
DRILLIN				Geoprobe				DRILLER:	•	Nathan Ferree	
		1				MATERI	AL DESCRIPTION		ı	Tradian Fonce	
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classi		U S C S .	Remarks	
5-1	0 - 1	1	-		HARD	GIAN- BLACK	GRAYELLY CF-C) Clay	CL/GC	14:00	
	1 - 2					GRAT- BLACK	and clayey t	ca- Conss	166	2355041-0002	
	2 -3						grand FILL	Dryto		14:00 2355041-0002	
	3 - 4						moist				
	4 - 5										
	5 - 6										
	6 - 7							-			
	7 - 8						····				
	8 - 9										
	9 - 10										
						-					
								-			
	i			İ							
i				,							
Remarks	· -	Hond	even b	orng or	supe o	orthur	est of Buildy	36	***		

Remarks:	Home was born	g on stope n	othwest of	Builda 36		
		/	0	0		
Converted to We	il: Yes		No	<i>f</i>	Well I.D. #:	

T		Tei	tra Tech	1	<u>B0</u>	RING	LOG			Page _1_ of _1_
PROJE	CT NAM	IE:		NSA Cran	ie - SWMU 23			BORING No).:	58047
PROJE	CT NUM	IBER:		112IG060	18			DATE:		MALCH 28, 2014
	NG COM		ŀ	Chase				GEOLOGIST	T:	J. Ferguson
DRILLI	NG RIG:			Geoprobe				DRILLER:		Nathan Ferree
Sample No. and Type or RQD	(Ft.)	6" or RQD	/ Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	IAL DESCRIPTION Material Classifi	Ication	υ s c s .	Remarks
3-1	0 - 1	-			Soft	BUACK -Brown	Sandy (F) SILF	- ml	mejei	13:10 13:5042-0002
<u> </u>	1-2	_				BINK-	Smity (=) Ci	H Frace	m1/ce	2355042-0002
<u></u>	2 -3						fue gowl , tra	ce organi	د	
	3-4	<u> </u>]			material, MOIS	st'		
	4 - 5									
	5-6									-
	6-7									
ļ!	7-8					<u> </u>				
	8-9									
	9 - 10									
,										
,	i 1	ı l	ı J	1 !	1	1 '				

Remarks:	1 hand	my berry	as supe	north ws	+ of	Bu ldy	36	
Converted to We	 	Yes		No _	4		ell I.D. #:	2 12

T		Tet	ra Tech	1	ВО	RING	<u>LOG</u>		Page _1_ of _1_
PROJE	CT NAM	E:		NSA Cran	e - SWMU 23	3	BORING No	.:	58043
PROJE	CT NUM	BER:		112IG060	18		DATE:		MAKCH 28.
DRILLI	NG COM	PANY:		Chase			GEOLOGIS		J. Ferguson
DRILLI	IG RIG:			Geoprobe			DRILLER:		Nathan Ferree
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	AL DESCRIPTION Material Classification	U S C S	Remarks
5-1	0 - 1	-	-		SOFT	Brown	Sier Cras and clary S. w. trace for sort trace for grand, worst	m'/el	MIO
	1 - 2		-			Brack	5.15, trace for sort	1/11	2355043-0002
	2 -3						tracefine grand, moist		
	3 - 4								
	4 - 5								
	5 - 6								
	6 - 7								
	7 - 8								
	8 - 9								
	9 - 10								
					_				
							7.00		
							383		

Remarks:	Short	arm	bong a	n scope	northwast	al	Bally	36	
	-		a			0	4		
Converted to V	/ell:	Yes	<u> </u>		No _	X		Well I.D. #:	

		Tet	tra Tech	1	ВО	RING	LOG		Page _1_ of	_1_	
PROJE	CT NAN	IE:		NSA Cran	e - SWMU 23			G No.:	58 844		
PROJE	CT NUM	IBER:		112IG060			DATE:		Marcel 28, 2014		
DRILLI	NG COM	IPANY:		Chase			GEOLO	OGIST:	J. Ferguson		
DRILLII	NG RIG:	ł		Geoprobe			DRILLE	ER:	Nathan Ferree		
						MATER	AL DESCRIPTION				
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness		Material Classification	U S C S	Remarks		
51	0-1		**		Soft	BLOCK- BLOWN	SILTY CLASS AND BY SILT, Frace for son trace for Comst gg	myey my	11:00		
	1-2	-	-			Bran	SICT Frace for so	of m/ce	2335044-0002		
	2 -3						trace for comse que	wll			
	3 - 4						moist				
	4-5										
ļ	5-6					!					
	6-7							0.54			
	7-8							A27-33(5)			
	8-9						7.0				
<u> </u>	9 - 10						320 7 320				
							New years				
							572.5 N. 181				
							Stanger 5.5				
	., .,										
							3000 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
							- An Alice				
								_			
				}						_	
										_	
Remarks	s: .	shan.	Myn	boy an	sign (optie.	of of Bully 36.			10.10	
Convert	ed to W	ell:		Yes			No X	Well I.D. #:			

No

Well I.D. #:

Tŧ			ra Tech			RING	<u>LOG</u>			Page _1_ of _1
PROJE(PROJE(NSA Cran 112IG060	e - SWMU 23 เล	<u> </u>	 	BORING No	.:	48 045 MALLI 28, 2014
DRILLIN				Chase	-			GEOLOGIS	r.	J. Ferguson
DRILLIN				Geoprobe				DRILLER:	•	Nathan Ferree
						MATERI	AL DESCRIPTION			
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classit	fication	U S C S	Remarks
5-1	0 - 1	_	-		504	Buck -Bran	Sieri. Log, 1. Hle for - co	for -	el	13:00
	1 - 2	~				-Bran	1. He for a	PHISC,	LL	2335045-0000
-	2 -3					4,	mgular grand,	moist		
	3 - 4							3000		Hote: Augu reford
	4 - 5									Hote: Augu reford
	5 - 6		-							rock
	6 - 7									
	7-8									
	8 - 9						108-1			
	9 - 10						-			
								M. 200		
							:#W-			
					,					
							W. W. W.			
				Ì						
					`					
				•						
		1								
								-		
		2	UW					-		
emarks	: ,	Ihmo	1 aves	1 bons	m sweet	noch	Luest as.	Bu 14	21	

Remarks:	shend	sugar boay	on scope	north w	est of	Bully 36	
Converted to W	eli:	Yes		No	×	Well I.D. #:	

T		Tet	ra Tech	ı	во	RING	LOG		Page _1_ of _1_
PROJEC	CT NAM	E:		NSA Cran	e - SWMU 23		BORING N	lo.:	58-046
PROJE	CT NUM	BER:		112IG060			DATE:		MARCH 28, DOY
DRILLIN	IG COM	IPANY:		Chase			GEOLOGI	ST:	J. Ferguson
DRILLIN	IG RIG:			Geoprobe			DRILLER:		Nathan Ferree
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	AL DESCRIPTION Material Classification	U s c s *	Remarks
ゴー/	0 - 1	_	-		SOFT-STIFF	BeALL -Blur	Surt have and the	1 /01	13:26
	1 - 2				3081-51166	Brack- Brown	SILTY LIMY AND Clay SILT, Frace has soul 1. Who ho some organic matter, moist - wit	11/01	2355046-0002
	2 -3			·			1. H/ fo som organic		
	3 - 4						matter, moist-wet		
	4 - 5								
	5 - 6						C-2-76		
	6 - 7						7947		
	7 - 8								
	8 - 9							ě	
	9 - 10								
				:		,		-	
							527 J		
.								<u>.</u>	
							1220 - 122	-	
								-	
		-							
						-	7000		
							<u> </u>		
			7/2	222				4	

Remarks:	thous	Auson	bong	on super	ADAHus	Fof B	Ruelly 36	
-		. ,	đ			0	4	
Converted to We	ell:	Y	es		No _		Well I.D. #:	

PROJEC PROJEC DRILLIN	CT NAM CT NUM	E: BER:	ra Tech		e - SWMU 23	RING	<u>LOG</u>	BORING No DATE: GEOLOGIS		Page _1_ of _1 <u>SBOY7</u> <u>MHUN 28, ZOIY</u> J. Ferguson
DRILLIN				Geoprobe	N. H.	40000		_GEOLOGIS DRILLER:	1.	Nathan Ferree
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened	Soil Density/ Consistency or	Color	AL DESCRIPTION Material Classi		U S C S	Remarks
•	1,2			Interval	Rock Hardness					0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
5-1	0 - 1	1			soft	BLMK- Blown	Siers leng mos Sus, troce for Ithe - some De cont	ed clover	m1/c1	13:25
	1 - 2					Bisck- Ban	Siss . From for	sond,	1/1	2355047-0002
	2 -3						1.H/c - some pr	conse, mat-		
	3 - 4						erial			
	4 - 5						•			
	5-6									
	6 - 7									
	7-8									
	8-9									
	9 - 10									
								-		
							1500	17- 2-17		
						_				
								399		
				:						
								.0.170		
							W.	81		
				ĺ			7.00			
								200		
	,							-		
Remarks	: _	shm	d my	a bon	., an 3 c	gu	northurst a	Bully	36	

Remarks:	muga borine	on 3 case	mark	huest of	Buckley 36	
WE FLOOR D				,	8	
Converted to Well:	Yes	2.22	No	×	Well I.D. #:	 _
Converted to Well:	Yes		No	×	Well I.D. #:	_

Page L of L

PRO		, NAME NUMI		NSA	CRAN	E. 39	BORI DATE	NG No	o.:	235B027 5118113				
		COM		TRIE	G035			 LOGIS	T:	CONTI				
DRIL	LING	RIG:			540		DRILL	LER:		D. SAMSEL				
					N	1ATEI	RIAL DESCRIPTION			1	PID/FI) Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	(Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	1	U	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1					STIFF	GAY	CLAYEY SILT- GR	MEL	ML	DAMP	0			
e 1430			3.8/4	2			ROCK FIRE	35		(9002)				
5-2				1	STIFF	BRN	CLAYEY SILTY S	144	L					
1435	4			4			CLAYEY SILTY S	5 /	ML	(0204) MOIST	0			
				41			(F	iu)						
				TO										
Щ														
Щ		<u>/</u> ,												
Ш														
		/_									Ш			
		\angle												
				, :										
		-												
		\angle		2										
		-	:											
* \A/ha=	rock	vring onto	er rock bro	kanasa										
	de mon				borehole. I	ncrease	reading frequency if elevated re	eponse re	ead.	Drillin Background			C)
Conv	erted	to We	II:	Yes			No W	/ell I.D	. #:	NA				

Converted to Well:

Yes

BORING LOG

Page ___ of ___

PROJECT NAME: NSA CRANE BORING No.: PROJECT NUMBER: DATE: DRILLING COMPANY: -GEOLOGIST: TRI ECO CONTL **DRILLING RIG:** DPI 54 DT DRILLER: D SAMSEL MATERIAL DESCRIPTION PID/FID Reading (ppm) Depth Lithology Blows / Sample U No. (Ft.) 6" or Recovery Change S Soil Density/ and RQD (Depth/Ft.) Borehole** BZ** C Run Sample Consistency Type or Remarks Color RQD Length Screened or **Material Classification** S Interval Rock Hardness DENSE PRAY CLAY, SILT, GRAVEL DAMP **(** 4/4 @ 1440 SHFF GRAY (0204) MOST 1445 CLAYEY SIUT-TR H TD * When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. **Drilling Area** Remarks: Background (ppm):

No

Well I.D. #:

NA

Page ___ of ___

PRO	JECT	NAMI NUMI		112	GO 3:	E 339	DAT	ring n Te: Ologis		23SB029 518113			-	
		RIG:	AIII.	DPT		DT		LLER:) I .	CONTI D SAMSEL				
							RIAL DESCRIPTION				PID/FI) Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	on	U	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1	0				STIFF	G _{ZA} Y	CLAY, SILT- GRA	IE I	MI	(0002) DAMP	0			
5-1450 1450	•			(2)	0,115	ТО	TO	W-L		LODOZ) DRIVIE				
S-2		\angle	3-5/4	©		V.	SILTY CLAY -TR		CL	MOIST				
1455	4	_				TO	TR DK GRAY STAIN	1.8		(0204)	0			
				4' TD		BRN	<u></u>	-					\dashv	
										SLIGHT BURNT MATCH TYPE SMELL.	Н		\dashv	
										TYPE SMELL.	H			
										·	П			
								-						
	İ													
					·						\square			
		-									H		\dashv	
											\vdash			
		/											_	
							····				П		\dashv	
		\angle												
		\angle												
* Whan	rock co	oring ente	er rock bro	keness										
	de moni				borehole. I	ncrease	reading frequency if elevated	reponse r	ead.	Drillir Background			6	۵
Conv	erted	to We	II:	Yes			No V	Well I.C). #:	NA-	<u> </u>			

0320

032014 -XXX

PAGE_1_ OF _1_

STANDAR RUSH TAT		WILL		1000	Basinski OPERAT			412-921-8524 TestAmerica,					RY NAME AND CONTACT: :a, Inc. / Michele Kersey 912-354-7858 (ext. 3312)					
STANDAR RUSH TAT		1116			rguson	IONS LE	ADER		ONE NUMBER 2-921-7090		ADDRESS			, 00		(unc 0012)		
STANDAR RUSH TAT				CARRI Fed Ex	ER/WAY	BILL N	JMBER				CITY, STA Savannal	TE h, GA 31404						
STANDAR RUSH TAT		,000		6		-			Container Type Plastic (P) or Glass (G)	6	e					a hise		
24 hr.	□ 48 h	nr. 72 hr. 7 day	14 day			QC, ETC			Preservative Used	4ºC	4ºC				3-			
DATE YEAR: 2014	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (@W, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHs	680-				COMMENTS		
3/21	0930	23\$\$062-0002	SB062	0	2	50	С	1			1	99753			Analyze			
3/21	1155	23\$\$064-0002	SB064	0	2	so	С	1			1	Chain			Hold			
3/21	1200	23SB064-0204	SB064	2	4	so	С	1	L. Harris		1	<u>o</u> ,			Hold			
3/21	1205	23SB064-0406	SB064	4	6	so	С	1			1	Custody			Hold			
3/21	1215	23\$\$065-0002	SB065	0	2	SO	С	1			1	7			Analyze			
3/21	1230	23\$\$066-0002	SB066	0	2	SO	С	1			1				Hold			
3/21	1235	23SB066-0204	SB066	2	4	so	С	1		F4F 7F	1				Hold			
3/21	1240	23SB066-0406	SB066	4	6	SO	С	1			1		1	,	Hold	te la la		
3/21	1300	23SS067-0002	SB067	0	2	SO	· C	1			1				Analyze	TATE OF		
3/21	1305	23SB067-0204	SB067	2	4	SO	С	1			1				Analyze	e la perien		
3/21	1310	23SB067-0406	SB067	4	6	so	С	1			1	680	9975	3	Hold			
3/21	1330	23\$\$068-0002	SB068	0	2	so	С	1			1		15.6	1	Hold			
3/21	1335	23SB068-0204	SB068	2	4	SO	С	1			1		= "		Hold			
	RELINQUISHED BY Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z.			DATE DATE	4-14		TIME	1. R	CEIVED BY	Sun	44			DATE O3 2	3/14	TIME 0937		
3. RELINQ	UISHED BY			DATE			TIME		CEIVED BY					DATE		TIME		

		. 7	
1			
	_		

TETRA TECH, INC.

CHAIN OF CUSTODY

NUMBER

032014 -XXX

PAGE_1_OF_1_

PROJEC 1121GO		FACILITY: NSA Crane - SWM	IU 23		CT MAN Basinsk				ONE NUMBER 2-921-8524		LABORA Testame	ATORY NAME A erica, Inc. / Mi	MD CONT	ACT:	254.70F4	(art 9949)
	RS (SIGNATU	RE)		FIELD	OPERAT		ADER	PH	ONE NUMBER 2-921-7090		ADDRES			50y 912-	304-7606	(ext. 3312)
	1.	Wilt		CARRI Fed Ex	ER/WAY	BILL NI	MBER				CITY, ST			-		
		var.				2			Container Type Plastic (P) or Glass (G)	g	G					
RUSH TA	RD TAT	r. ☐ 72 hr. ⊠ 7 day ☐	14 day			QC, ETC.)			Preservative Used	4°C	4ºC					
DATE 2014	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, SO, SW, SD,	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHs					COMMENTS
3/21	1140	23\$\$049-0002	SB049	0	2	SO	С	1		21	1	# 1			Hold	
3/21	1130	23\$\$050-0002	SB050	0	2	so	С	1			1				Analyze	
3/21	1120	23\$\$051-0002	SB051.	0	2	SO	С	1			1		2 -		Hold	
3/21	1115	23SS052-0002	SB052	0	2	so	С	1			1				Hold	
3/21	1055	23\$\$053-0002	SB053	0	2	so	С	1			1				Analyze	
3/21	1045	23SS054-0002	\$B054	0	2	SO	С	1	Dit.		1			# _ #	Hold	
3/21	1035	23\$\$055-0002	SB055	0	2	SO	С	1			1				Hold	
3/21	1025	23\$\$056-0002	SB056	0	2	SO	С	1			1				Analyze	
3/21	1015	23\$\$057-0002	SB057	0	2	so	С	1	8 = 3		1				Hold	
3/21	1010	23SS058-0002	SB058	0	2	SO	C	1			1				Analyze	
3/21	1005	23\$\$059-0002	SB059	0	2	SO	С	1			1				Analyze	
3/21	0955	23\$\$060-0002	SB060	0	2	SO	С	1			1	680-	9975	3	Hold	
3/21	0945	23\$\$061-0002	SB061	0	2	SO	C	1			1	2.0	15.6		Hold	
	QUISHED BY	Willet			14-1	9	IME			Wh	<i>y</i> *			DATE 2		TIME 437-
	QUISHED BY			DATE	/	1	TME	2. RE	CEIVED BY					DATE		TIME
3. RELIN	QUISHED BY			DATE		1	IME	3. RE	CEIVED BY					DATE		TIME

H	TETRA TECH, INC.
	TETRA TECH, INC.

NUMBER 032014 -XXX

PROJECT 1121906	018	FACILITY: NSA Crane - SWMU	23		CT MAN				IONE NUMBER					ID CONTACT:	12.354.785	8 (ext. 3312)
SAMPLE	rs (Signat				OPERAT rguson	IONS LE	ADER		ONE NUMBER 12-921-7090		AD	DRESS	he Avenue		2007700	6 (ext. 3312)
	//	2.624		CARRI Fed Ex	ER/WAY	BILL N	MBER		*	3 (5		Y, STATE vannah, G	A 31404			
						3			Container Type Plastic (P) or Glass (G)	G	G					ë » Bi
RUSH TA	RD TAT 17. 48	hr. 72 hr. 9 <mark>2 7 d</mark> ay 1	L4 day			QC, ETC			Preservative Used	4ºC	4ºC					
DATE YEAR: 2014	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, 60, 5W, SD, QC, ETC.)	COLLECTION METHOD GRAP (Q) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHS					COMMENTS
3/21	1340	23SB068-0406	SB068	4	6	SO	С	1			1		=		Hold	
3/21	0000	FD01-032114	-	0	2	50	С	1			1				Duplic	ate - Analyze
						SO	С	1								
						so	С	1		1 = 1				F		
		19				SO	С	1								
						so	C	1						- 1	1 20	
						SO	С	1		5 5						
	====			V _{II} iş		SO.	C	1								
						SO	С	1	F = 15 W							
	V, = , _	121 Law 111				so	C	1	(c) = 11							
u sili						\$O	С	1		31					680 -	92753
						SO	С	1							2	2.62
		1 . 1				SO	С	1								
	QUISHED BY	11.11		DATE 2	4-14	′ 1	TME			水				DAT	Isty	TIME 9137
	OUISHED BY						IME		CEIVED BY					DAT		TIME
				DATE		- 1	IME		CEIVED BY					DAT		TIME
COMMEN	I Hold = Ho	ld Sample in storage until further d	irected by Tel	ra Tech	- Do not	extract	. Anaty	728 = An	alyze sample withli	n designa	ated TAT.		-			

112	CT NO: IG O LERS (SK	FACILITY: NSACRANES GNATURE)	WM423	FIELD	T-enga	TONS	LEADER NUMBER	4	12-4 58-0	121- 2	7890	50	TATE	aluch	ocontact: Mickele Lifte 3/40	
USH	DARD TA' TAT hr.	T ☐ 48 hr. ☐ 72 hr. 🔼 7 day 🔲	14 day			7, SD, QC,	QC		PLAS PRES USED	ERVATI	or GLASS (C	3) /				
YEAR XO19	TIME	SAMPLE ID	LOCATION ID	тор DEPTH (FT)	BOTTOM DEPTH (FT)	MATRIX (GW, SO, SW, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	THE	OF AME			//			MENTS
20	16:14	23580030204	503	2	4	50	6	1	×	_		889				
-17		235\$ 063 0002	5663	0	2.	50	67	١	×	-		9883			Ho	LO M
	16.19	23530630204	503	2	ių	50	G	1	×			Chall			H	suo 4
	113-01-1	23580620204	02	2	4	50	67	1	×			n of C				
	15:53	3855 073 0002	3 73	٥	2	SO	61		×							
		2358071 0204	SB 1	2	4	Sa	G	(×			_ ~				
		23550710002	SB 7 1	O	2	50	6	1	×	110	1,16	_				
		235 6069 0204	589	2	4.	SO	ઉ	1	×	_		_				
V	16:29	23550690002	589	0	2	SO	6	1_	×	_						
		* 103								3						
	INQUISH	30,000		099	24	4	TIME	1. R	ECEIVE ECEIVE	DBY C ME	3# 30	43 33	353	9869	93F27 H	TIME
	INQUISM			DATE			TIME	2. RI			5				DATE	TIME
RELINQUISHED BY				DATE		B	TIME	3. RI	ECEIVE	D BY	LIKL	_	1.400		DATE 03 DICT	TIME (0)

	TIME	SAMPLE ID	LOCATION ID	тор DEPTH (FT)	воттом рертн (FT)	MATRIX (GW, SO, SW, S ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	TIPE	O'AMA	is a second					/ co	MAENTS
3/26/1	5:40	235B0750406	75	4	6	50	61		7							HOU	2
126 1	5.40	2356075 0204	5875	2	4	Sd	රා	l	×			11				Hous	nuk,
3/26 1		23580740406	534	4	6	50	G	t	X	_		- 7 1				HOLI	11/14
126 1	5:44	23550740002	58 74	O	2	80	62	3	×			- 51			- (48)		
		23580740204	34	2	4	50	61	1	X	-							
100 1	S=##	233807406			0	30	5		X		8						
	NOUISH			DATE	27/11	1 1	TIME 15	1. R	ECEIVE	PAN A	8	043	335	3 9 869	DATE		TIME
3. RELIN	NQUISHI NQUISHI)	DATE			TIME		ECEIVE		4				DATE	જીત્ય	TIME TIME
COMME	ENTS BUTION:	WHITE (ACCOMPANIES SAI	MPLE)			YELLO	W (FIELD	COPY)		-	2	PIN	K (FILE CO	(. Y*	c 51	80 - 99 FORM	4/02R NO. THUS-001

21	CT NO: CI OGO LERS (SIG	DIY GNATURE)	FACILITY: USA Crane S	WHU23	12	Bas	ANAGER	LEADE	P)	IONE N	UMBER	8524	Tes		RY NAME	AND CONTA	ICT:
	· ×	3								12 -	121-	7090			1000	cho Ave	
	. (6	7			CARR			, NUMBER	2		V 2/11		CITY	, STATI	E		
1	1 0	S			Rd	火	177	1-5	305	<u>8 –0</u>			S	WAN	NAH ,	GA 3	31404
AND	ARD TA									PLAS	TAINER STIC (P)	or GLASS	S (G)	/_	//	//	
ISH T	TAT 🖂		r. 🖾 7 day 🗀	14 day			SD, QC,			PRES	SERVAT	TVE		/,	//		///
YEAR SOUS	TIME	SAM	APLE ID	LOCATION ID	тор DEРТН (FT)	ВОТТОМ DЕРТН (FT)	MATRIX (GW, SO, SW, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	THE	OF REAL PROPERTY.	3					COMMENTS
6	15:30	2355048		5848	0	2	50	62	1	×	_		ΞĹ	Í			
-		23580630		63	4	6	50	6	1	×	-						HOLD
	. 1	2358003		03	4	6	50	61	1	×	_						HOLD
- 1		2358002		58	4	6	50	6	1	X							HOLD
1		2355072		5577	6	2	50	G	1	*	_						11000
		2358072		58 72	2	4	56	61	1	×							Mory
		2358672		72	4	6	50	Gı	1	×							L6L1)
1.		23580710		58	4	6	50	6	1	×				1	9.11		HOU
		2355070		70	0	a	50	62	i	×	_			=0			HOLD
		2358070		\$ 1 m	2	4	50	G		×	_				8 8 8		How
	-	23586700		9970	4	6	50	5	1	¥							HOLD
		23580690		169	4	6	50	G	1	x							HOLD
1	15:40	2355075	0002	\$ 5	0		50		i		_					2	HIDLD
ELII	NOUISHE	DBY				7/14		MES	1. R	CEIVE	D BY	HAN	43 33	53	9861	DATE	TIME
Eldf	VQUISHE	D BY	5		DATE			IME	2. RI	ECEIVE	DBY	<u>. 00</u>	1- 00			DATE	TIME
ELIN	VQUISHE	D BY			DATE		Ť	IME	3. RI	ECEIVE	DBY					DATE	TIME
4845	NTS								١			·····			134		99883

4/02R FORM NO. TtNUS-001

NUMBER

100112-06

PAGE _1_ OF _1_

PROJECT		FACILITY: NSA Crane - SWMU	23	PROJE Jim Go	CT MAN/ erdt	AGER		4	HONE NUMBER 12-921-8425				/ NAME A			i-1115)
SAMPLE	RS (SIGNA	TURE)		FIELD (OPERATI erdt	IONS L	EADER		HONE NUMBER 12-921-8425		ADD	RESS	am Drive			
4	<u>_</u>				ER/WAY / 8013							, STATE wille, TN	37228			
									Container Type Plastic (P) or Glass (G)	G	G	G	G	G	G	
STANDAI RUSH TA		hr. 72 hr. 7 day 1	4 dav	-		C, ETC.)			Preservative Used	8°C / CH40/ NeSH 04	6°C	6°C	6°C / CH40	6°C	6°C / HCL	
DATE 2012	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (INCHES)	BOTTOM DEPTH (INCHES)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	VOCs	Metals/TOC	PAHs/PCBs	TPH (GRO)	TPH (DRO/ERO)	VOCs	COMMENTS
10/8	900	23SD001-0006	001	0	6	SD	G	15		9	3	3				MS/MSD
10/8	1050	23SD002-0006	002	0	6	SD	G	5		3	1	1				
10/8	1110	23SD003-0006	003	0	6	SD	G	5		3	1	1				
10/8	1345	23SD004-0006	004	0	6	SD	G	5	· · · · · · · · · · · · · · · · · · ·	3	1	1				
10/8	1330	23SD005-0006	005	0	6	SD	G	5		3	1	1				
10/8	1320	23SD006-0006	006	0	6	SD	G	5		3	1	1				
10/8	1400	23SD008-0006	008	0	6	SĐ	G	7		3	1	1	1	1		
10/8	0000	23FD100812-04	QC	-	_	QC	G	5		3	1	1				2350001-0006
10/8	1700	23RB100812-01	QC	-	_	QC	G	11		3	2	2	2	2		
10/8	1730	23TB100812-01	QC		-	QC	G	2							2	
1/2	QUISHED E	Wellump		DATE	19/1	4	TIME (600)	1. F	ECEIVED BY			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DATE	TIME
2. RELING	UISHED E	w //		DATE			TIME	2. F	ECEIVED BY				,		DATE	TIME
3. RELING	QUISHED E	Υ		DATE			TIME	3. F	ECEIVED BY				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		DATE	TIME
COMMEN	TS	PRINCIPLE AND AND AND AND AND AND AND AND AND AND		,F		L	1	- L	 							<u> </u>

NUMBER

042014 -001

PAGE _1_ OF _1_

PROJEC 112IGO		FACI NSA	ILITY: Crane – SWMU 2		PROJ	ECT MAN	NAGER			PHONE NUMBER		LA	BORATO	RY NAME	AND COR		_1_ UF _	
SAMPLE	RS (SIGNA	TURE)		23	FIELD Jim G		TIONS LI		P	12-921-8308 PHONE NUMBER 12-443-0244		Te:	stAmeric DRESS	a, Inc. / N	lichele Ke	ersey 912	-354-785	8 (ext. 331)
		Li P	>5	TOTAL STATE OF THE	CARR Fed E	IER/WA x / 8043	YBILL NO 3353 9	UMBER 1940	I			CIT Sa	r Y, STATE vannah,	GA 3140	4			
STANDA	RD TAT						8			Container Type Plastic (P) or Glass (G)	G	G						
RUSH TA	T	10 Day TAT hr.]7 day 📋 14	day			, QС, ЕТС.)			Preservative Used	4°C	4°C						
DATE YEAR: 2014	TIME	SAMPL	E ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, SO, SW, SD, QC,	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHS					CO	MMENTS
4/17	1625	23\$\$076	-0002	076	0	2	so	G	1		1		1	-				
4/17	1625	23SB076	-0203	076	2	3	so	G	1		1		-					
4/17	1645	23\$\$077	-0002	077	0	2	so	G	3		3			-	-			
4/17	1700	23SS078	-0001	078	0	1	SO	G	1		1		-		-		MS/MS	.D
4/17	1650	23\$\$079	-0002	079	0	2	SO	G	1		1			-	-	-		
4/17	1640	23\$\$080-	-0002	080	0	2	so	G	1		1		-					
4/17	1710	23\$\$081-	0001	081	0	1	so	G	1		1							
4/17	0000	23FD0417	14-01	QC			SO	G	1		1							***************************************
RELINO	VISHED BY																	
(-/. 2.	~ ~			DATE	8/15	/ 7	ME 330 ME	1. RE	CEIVED BY			1			DATE		TIME
	UISHED BY				DATE	111	ŤI	ME	2. RE	CEIVED BY						DATE		TIME
	JISHED BY				DATE		TI	ME	3. RE	CEIVED BY						DATE		TIME
MMENT	S:															DAIL		THVIE

NUMBER

102212-01

PAGE _1_ OF _2_

PROJECT 112G035			FACILITY: NSA Crane - SWMU 23	3	PROJE Jim Go	CT MAN/ erdt	AGER			PHONE NUMBER 12-921-8425				NAME Als / Brian		ACT: (615-345-	1115)	
SAMPLE	RS (SIGNAT	TURE)		-		OPERATI Losekam		ADER		PHONE NUMBER 513-333-3680		ADD	RESS	am Drive,			<u></u>	
						ER/WAY / 8013							, STATE Iville, TN	37228				
										Container Type Plastic (P) or Glass (G)	G	G	G	G	G			
STANDAR RUSH TA	RD TAT 🔯	hr. 🗌 72 h	nr. 🔲 7 day 🔲 14 (dav			QC, ETC.)			Preservative Used	8°C /H20/ CH40	6°C	6ºC	6°C / CH4O	6ºC			
DATE 2012	TIME		SAMPLE ID	LOCATION ID	тор рертн (FT)	воттом DEPTH (FT)	MATRIX (GW, SO, SW, SD, C	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	VOCs	Metals/Sulfate/pH	PAHs/PCBs	TPH (GRO)	TPH (DRO/ERO)		co	MMENTS
11/01	1015		SS007-0002	007	0	2	so	G	7		3	1	1	1	1			
11/01	1230	235	SS008-0002	008	0	2	SO	G	7		3	1	1	1	1			
11/01	1300	238	SS009-0002	009	0	2	SO	G	7		3	1	1	1	1			
11/01	1330	238	SS010-0002	010	0	2	so	G	7		3	1	1	1	1	(8)		
11/01	1415	239	SS011-0002	011	0	2	so	G	7		3	1	1	1	1			
11/01	1430	235	SS012-0002	012	0	2	so	G	7		3	1	1	1	1			-
11/01	1500	235	SS013-0002	013	0	2	SO	G	7		3	1	1	1	1			
10/31	1615	235	SS014-0002	014	0	2	so	G	7		3	1	1	1	1			
10/31	1600	235	SS015-0002	015	0	2	so	G	7		3	1	1	1	1			
10/31	1630	235	SS016-0002	016	0	2	\$0	G	7		3	1	1	1	1			
10/31	1645	235	SS017-0002	017	0	2	S0	G	7		3	1	1	1	1			
11/01	1030	235	SS018-0002	018	0	2	S0	G	7		3	1	1	1	1			
11/01	1215		SS019-0002	019	0	2	SO	G	7		3	1	1	1	1			
Kevin Los					DATE 11/01/	/12	:	IME L800		RECEIVED BY						DATE		TIME
	QUISHED B				DATE			IME	2.	RECEIVED BY						DATE		TIME
5.1	UISHED B	Υ			DATE		1	IME	3.	RECEIVED BY			Y			DATE		TIME
COMMEN	TS						•								-			

NUMBER

102212-02

PAGE _2_ OF _2_

PROJECT 112G035			FACILITY: NSA Crane – SWMU 2	23	PROJE Jim Go	CT MAN/ erdt	AGER			PHONE NUMBER 412-921-8425				' NAME Al s / Brian		ACT: (615-345-	.1115)
SAMPLER	RS (SIGNAT	TURE)				OPERATI osekam		ADER		PHONE NUMBER 513-333-3680			RESS Mainstre	am Drive,	Suite 27	0	
						ER/WAY / 8013							, STATE Iville, TN	37228		_	. #8
										Container Type Plastic (P) or Glass (G)	G	G	G	G	G		
STANDAR RUSH TA	r 🗆 🔝	hr. 72 h	r. 🗌 7 day 🔲 14	l day			QC, ETC.			Preservative Used	8°C /CH40 / H20	6ºC	6ºC	6ºC/ CH4O	6ºC	6°C/ HCL	
DATE YEAR: 2012	TIME		SAMPLE ID	LOCATION ID	тор DEРТН (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	VOCs	Metals/Sulfate/pH	PAHs/PCBs	TPH (GRO)	TPH (DRO/ERO)	VOCs	COMMENTS
11/01	1130		S020-0002	020	0	2	SO	G	7		3	1	1	1	1		
11/01	1200	238	S021-0002	021	0	2	SO	G	7		3	1	1	1	1		
11/01	1530	238	S022-0002	022	0	2	SO	G	7		3	1	1	1	1		
11/01	1600	238	S023-0002	023	0	2	SO	G	7		3	1	1	1	1		<u>. </u>
11/01	1630	23TI	3110112-01	Trip Blank	QC	QC	QC	G	2							2	
				-						-							245
		-								-		-					
					11											!	
1. RELING	UISHED BY	Υ			DATE 11/01/	′12		IME .800	1.	RECEIVED BY		.1	l	<u> </u>		DATE	TIME
	UISHED BY	Y	······································		DATE			IME	2.	RECEIVED BY						DATE	TIME
	UISHED BY	Y	-	·	DATE		Т	IME	3.	RECEIVED BY						DATE	TIME
COMMEN	TS						I										1

PROJECT			FACILITY: NSA Crane - SWMU 2:	3	PROJE	CT MANA erdt	AGER		1	ONE NUMBER 2-921-8425				NAME AIs / Brian			-1115)	<u></u>
SAMPLEI	RS (SIGNAT	TURE)			FIELD (OPERATI erdt	ONS L	EADER	- 1	ONE NUMBER 2-921-8425			RESS Mainstre	am Drive,	Suite 27	0		· · · · · · · · · · · · · · · · · · ·
0	<u></u>					ER/WAY / 8013							, STATE wille, TN	37228				B1
	(Container Type Plastic (P) or Glass (G)	G	G	G	G	G			
RUSH TA		hr [7] 79 hr	. □ 7 day □ 14	day			IC, ETC.)			Preservative Used	6°C / CH40/ NaSH 04	6°C	6°C	6ºC / CH4O	6°C			
24 hr	. 40	hr. 📙 72 hi	. [] I taly [] 14	LOCATION ID	о DEPTH (FT)	воттом рертн (FT)	MATRIX (GW, SO, SW, SD, QC,	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	VOCs	Metals/Sulfate/pH	PAHs/PCBs	TPH (GRO)	TPH (DRO/ERO)		СОМ	IMENTS
DATE YEAR:	TIME	s	AMPLE ID	2	ō.	BO.	MA.	8 8 8	No.			ž						
10/7	915	238	S001-0002	001	0	2	so	G	7		3	1	1	1	1			
10/7	930	238	B001-1012	001	10	12	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metals ((2) PAHs on	
10/7	945	238	S002-0002	002	0	2	so	G	21		9	3	3	3	3		MS/MSD	
10/7	1000	238	B002-1012	002	10	12	S0	G	21(1)(2)		9	3(1)	3(2)	3	3		(1) Metals ((2) PAHs on	Only MS/MSD Ny
10/7	1015	238	S003-0002	003	0	2	S0	G	7		3	1	1	1	1			
10/7	1025	238	B003-0810	003	8	10	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metals ((2) PAHs on	
10/7	1350	238	S004-0002	004	0	2	so	G	7		3	1	1	1	1			
10/7	1405	23\$	B004-0810	004	8	10	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metals ((2) PAHs on	
10/7	1415	238	S005-0002	005	0	2	so	G	7		3	1	1	1	1			
10/7	1435	238	B005-0810	005	8	10	SO	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metals ((2) PAHs on	
10/7	1455	238	S006-0002	006	0	2	so	G	7		3	1	1	1	1			
10/7	1510	238	B006-0608	006	6	8	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metals ((2) PAHs on	
									11.5									
1. RELING	WISHED B	Lose	1 camp		DATE	8/1	ِ [TIME (GOO	1. RI	CEIVED BY						DATE		IME
2. RELING	UISHED B	Y	0		DATE			TIME	2. RI	CEIVED BY						DATE	T	IME
3. RELING	UISHED B	Ŷ			DATE			TIME	3. RI	ECEIVED BY						DATE	Т	IME
COMMEN	TS			· · · · · · · · · · · · · · · · · · ·	-J					.,	,		· · · · · ·			L		

NUMBER

100112-02

PAGE _2_ OF _2_

PROJECT 112G03		FACILITY: NSA Crane - SWMU 2	23	PROJE Jim Go	CT MAN	AGER			ONE NUMBER 2-921-8425				NAME Al s / Brian		ACT: (615-345	-1115)	
SAMPLE	RS (SIGNA	TURE)		FIELD (Jim Go	OPERAT erdt	IONS LE	ADER		ONE NUMBER 2-921-8425		1	RESS Mainstre	am Drive,	Suite 27	0		
6					ER/WAY / 8013			 .				, STATE wille, TN	37228				
									Container Type Plastic (P) or Glass (G)	G	G	G	G	G			
STANDAI RUSH TA	RD TAT 🔯	hr. 72 hr. 7 day 14	l dav			2С, ЕТС.)			Preservative Used	6°C / CH40/ NaSH 04	6°C	6ºC	6ºC / CH40	6°C			
DATE CO12			LOCATION ID	тор ОЕРТН (FT)	воттом DEРТН (FT)	MATRIX (GW, SO, SW, SD, QC,	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	VOCs	Metals/Sulfate/pH	PAHs/PCBs	TPH (GRO)	TPH (DRO/ERO)		co	MMENTS
10/7	1550	23SB024-0406	024	4	6	so	G	7		3	1	1	1	1			
10/7	1600	23SB024-0608	024	6	8	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metal (2) PAHs	
10/7	1540	23SB025-0406	025	4	6	so	G	7		3	1	1	1	1		(4)	
10/7	1545	23SB025-0608	025	6	8	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metal (2) PAHs	
10/7	1030	23SB026-0406	026	4	6	so	G	21		7	3	3	3	3		MS/MSD	
10/7	1035	23SB026-0608	026	6	8	so	G	7(1)(2)		3	1(1)	1(2)	1	1		(1) Metal (2) PAHs	
10/7	0000	23FD100712-01	QC	-	_	so	G	7		3	1	1	1	1		<i>ो</i> ३४५	201-000
10/7	0000	23FD100712-02	QC		-	SO	G	7(1)(2)		3	te)	1(4)	1	1		(1) Metal (2) PAHs	s Only 235800 only
10/7	0000	23FD100712-03	QC	_	_	S0	G	7		3	1	1	1	1		<u> 3355</u> 6	103-003
	:																
								77									
1. RELIN	UISHED B	1 (25/6 6	 >	DATE	8/12	1	IME (a)U		CEIVED BY	<u>i</u>	1	<u>.</u>			DATE		TIME
2. RELING	QUISHED B	Coschange		DATE	<u>U/ 10</u>		IME	2. RE	CEIVED BY	-					DATE		TIME
3. RELING	QUISHED B	Y		DATE		1	IME	3. RE	CEIVED BY						DATE		TIME
COMMEN	TS			J		1					· · · · · · · ·				l	<u></u> 1	

NUMBER

100112-07

PAGE _1_ OF _1_

PROJECT 112G03!		FACILITY: NSA Crane - SWMU 2	3	PROJE Jim Go	CT MAN/ erdt	AGER		- 1	HONE NUMBER 12-921-8425	· · · · · · · · · · · · · · · · · · ·		ORATORY oirical Lab				i-1115)	
SAMPLE	RS (SIGNA	TURE)		FIELD (OPERATI erdt	ONS LE	ADER	1	HONE NUMBER 12-921-8425		1	RESS Mainstre	am Drive	Sulte 27	70		
0					ER/WAY / 8013					***************************************		, STATE hville, TN	37228				
									Container Type Plastic (P) or Glass (G)	G	G	G	G	G	G		
STANDAI RUSH TA		hr. 72 hr. 7 day 14	day			QC, ETC.)			Preservative Used	8°C HIN03	64C HNO3	6°C					
DATE 2012	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (INCHES)	BOTTOM DEPTH (INCHES)	MATRIX (GW, SO, SW, SD, C	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Metals/Hardness	Metals -Dissolved	PAHs				COMMENTS	
10/8	905	23SW001	001	-	_	sw	G	9		3		6				MS/MSD	
10/8	905	23SW001-F	001	-	_	sw	G	3			3					MS/MSD	
10/8	1050	23SW002	002	-	-	sw	G	3		1		2					
10/8	1050	23SW002-F	002	-	_	sw	G	1			1						
10/8	1110	23SW003	003	_	_	sw	G	3		1		2					
10/8	1110	23SW003-F	003	-	_	sw	G	1			1						
10/8	1345	23SW004	004	_	-	SW	G	3		1		2					
10/8	1345	23SW004-F	004	_	_	sw	G	1			1						
10/8	1330	23SW005	005	-	-	sw	G	3		1		2					
10/8	1330	23SW005-F	005	_	-	SW	G	1			1						
10/8	1320	23SW006	006	_	_	SW	G	3		1		2					
10/8	1320	23SW006-F	006	-	_	SW	G	1			1						
10/8	0000	23FD100812-05	QC		_	QC	G	4		1	1	2				100 صنة 33	
	WISHED B	1 WSCCOME	>	DATE	81,	21	(OI)	المارير المرازع	RECEIVED BY						DATE	TIME	
2. RELING	QUISHED B	Y		DATE			IME	2. F	RECEIVED BY						DATE	TIME	
3. RELING	QUISHED B	Y		DATE		1	IME	3. F	RECEIVED BY						DATE	TIME	
COMMEN	TS		******	<u> </u>	•	L									I	, La , , , , , , , , , , , , , , , , , ,	

A TECH, INC. CHAIN OF CUSTODY

NUMBER

052014 -001

PAGE _1_ OF _4__

PROJECT 112IG06	018	FACILITY: NSA Crane – SWN	1U 23	Ralph I	CT MAN/ Basinski			41	ONE NUMBER 2-921-8308		Test/	America,	NAME AN Inc. / Mic	ND CONT hele Ker	ACT: sey 912-3	354-7858 (ext. 3312)
AMPLE	RS (SIGNATU	JRE)		FIELD (Jim Go	OPERATI erdt	ONS LE	ADER		ONE NUMBER 2-443-0244			RESS 2 LaRoch	e Avenue				
					ER/WAY / 8011			l				STATE nnah, GA	31404				
									Container Type Plastic (P) or Glass (G)	G	G						
RUSH TA	RD TAT T '. 48 h	ır. 🔲 72 hr. 🔀 7 day 🔲	14 day			QC, ETC.			Preservative Used	4ºC	4ºC						
DATE YEAR: 2014	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHs					co	MMENTS
5/23	1100	23SB001-0204	001	2	4	so	G	1			1						
5/23	1102	23SB001-0406	001	4	6	SO	G	1			1						
5/23	1020	23SB004-0204	004	2	4	so	G	3			3					MS/MSD	
5/23	1022	23SB004-0406	004	4	6	so	G	1			1						
5/23	1012	23SB048-0204	048	2	4	so	G	1			1						
5/23	1014	23SB048-0406	048	4	6	SO	G	1			1						
5/23	1110	23SB059-0204	059	2	4	SO	G	1			1						
5/23	1030	23SB073-0204	073	2	4	SO	G	1			1						
5/23	1032	23SB073-0406	073	4	6	SO	G	1			1						
5/23	1210	23\$\$082-0002	082	0	2	S0	G	1		1							
. RELIN	QUISHED BY	,	•	DATE		1	ПМЕ	1. RI	CEIVED BY		1				DATE		TIME
. RELIN	QUISHED BY	,		DATE		1	ГІМЕ	2. RI	ECEIVED BY						DATE		TIME
. RELING	QUISHED BY	,		DATE		1	ГІМЕ	3. RI	ECEIVED BY						DATE		TIME

RA TECH, INC. CHAIN OF CUSTODY

NUMBER

052014 -002

PAGE _2_ OF _4__

PROJECT L12IG06	018	FACILITY: NSA Crane – SWMU	J 2 3		CT MAN/ Basinski				ONE NUMBER 2-921-8308				NAME AN Inc. / Mic			354-7858	(ext. 3312)
AMPLEF	RS (SIGNATU	JRE)		Jim Go	OPERATI erdt	ONS LE	ADER		PHONE NUMBER 412-443-0244 ADDRESS 5102 LaRoche Avenue								
					ER/WAY / 8011						CITY, STATE Savannah, GA 31404						
									Container Type Plastic (P) or Glass (G)	G	G						
TANDAF USH TA 24 hr						2С, ЕТС.			Preservative Used	4°C	4ºC						
DATE YEAR: 2014	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHS					cc	MMENTS
5/23	1000	23\$\$083-0002	083	0	2	SO	G	1		1							
5/23	1002	23SB083-0204	083	2	4	SO	G	1		1							
5/23	1004	23SB083-0406	083	4	6	so	G	1		1							
5/23	930	23\$\$084-0002	084	0	2	S0	G	1		1							
5/23	932	23SB084-0204	084	2	4	so	G	1		1							
5/23	934	23SB084-0406	084	4	6	so	G	1		1							
5/23	910	23\$\$085-0002	085	0	2	so	G	1		1						HIGH LEA	AD (XRF)
5/23	912	23SB085-0204	085	2	4	so	G	1		1						HIGH LEA	AD (XRF)
5/23	914	23SB085-0406	085	4	6	so	G	1		1							
5/23	950	23\$\$086-0002	086	0	2	S0	G	1		1							
5/23	952	23SB086-0204	086	2	4	S0	G	3		3						MS/MSD	ı
5/23	954	23SB086-0406	086	4	6	S0	G	1		1							
5/23	940	23\$\$087-0002	087	0	2	S0	G	1		1						HIGH LEA	AD (XRF)
RELING	QUISHED BY	,	•	DATE	•	1	ГІМЕ	1. RI	ECEIVED BY		•	•			DATE	•	TIME
2. RELINQUISHED BY				DATE		٦	ГІМЕ	2. RI	ECEIVED BY						DATE		TIME
3. RELINQUISHED BY				DATE TIME			3. RECEIVED BY							DATE		TIME	

RA TECH, INC. CHAIN OF CUSTODY

NUMBER

052014 -003

PAGE _3_ OF _4__

PROJECT L12IG06	018	FACILITY: NSA Crane – SWML	J 2 3		CT MAN/ Basinski				ONE NUMBER 2-921-8308				NAME AN Inc. / Mic			354-7858 ((ext. 3312)
AMPLE	RS (SIGNATU	JRE)		Jim Go	OPERATI erdt	ONS LE	ADER		ONE NUMBER 2-443-0244		ADDRESS 5102 LaRoche Avenue						
					ER/WAY / 8011			l			CITY, STATE Savannah, GA 31404						
									Container Type Plastic (P) or Glass (G)	G	G						
TANDAR USH TA 24 hr	RD TAT					2С, ЕТС.			Preservative Used	4°C	4ºC					•	
DATE YEAR: 2014	ТІМЕ	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHS					co	MMENTS
5/23	942	23SB087-0204	087	2	4	so	G	3		3						MS/MSD	1
5/23	944	23SB087-0406	087	4	6	so	G	1		1							
5/23	920	23\$\$088-0002	088	0	2	so	G	3		3						MS/MSD	ı
5/23	922	23SB088-0204	088	2	4	so	G	1		1							
5/23	924	23SB088-0406	088	4	6	so	G	1		1							
5/23	900	23\$\$089-0002	089	0	2	so	G	1		1							
5/23	902	23SB089-0204	089	2	4	so	G	1		1							
5/23	904	23SB089-0406	089	4	6	so	G	1		1							
5/23	1040	23\$\$090-0002	090	0	2	so	G	1			1						
5/23	1042	23SB090-0204	090	2	4	S0	G	1			1						
5/23	1044	23SB090-0406	090	4	6	S0	G	1			1						
5/23	1050	23\$\$091-0002	091	0	2	S0	G	1			1						
5/23	1052	23SB091-0204	091	2	4	so	G	1			1						
	QUISHED BY			DATE			ГІМЕ		CEIVED BY						DATE		TIME
RELINQUISHED BY				DATE		1	ГІМЕ	2. RI	ECEIVED BY						DATE		TIME
. RELING	QUISHED BY	DATE TIME			3. RECEIVED BY				DATE		TIME						

CHAIN OF CUSTODY

NUMBER

052014 -004

PAGE _4_ OF _4__

PROJECT 112IG06		FACILITY: NSA Crane – SWMU	J 23		CT MANA Basinski	GER			IONE NUMBER L2-921-8308		LABORATORY NAME AND CONTACT: TestAmerica, Inc. / Michele Kersey 912-354-7858 (ext. 331				54-7858 (ext. 3312)	
SAMPLE	RS (SIGNAT	URE)		FIELD (PERATI erdt	ONS LE	ADER		10NE NUMBER L2-443-0244			RESS 2 LaRoch	e Avenue			
					R/WAY / 8011 :							CITY, STATE Savannah, GA 31404				
									Container Type Plastic (P) or Glass (G)		G					
STANDAI RUSH TA	RD TAT	hr. □ 72 hr. ⊠ 7 day □ :	14 day			2C, ETC.)			Preservative Used		4ºC					
DATE 2014	TIME	SAMPLE ID	LOCATION ID	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TYPE OF ANALYSIS	Pb	PAHs					COMMENTS
5/23	1054	23SB091-0406	091	4	6	SO	G	1			1					
5/23	1140	23\$\$092-0002	091	4	6	SO	G	1			1					
5/23	1142	23SB092-0204	091	4	6	SO	G	1			1					
5/23	1144	23SB092-0406	091	4	6	SO	G	1			1					
5/23	0000	23FD052314-01	QC	_	_	S0	G	1		1						
5/23	0000	23FD052314-02	QC	_	_	SO	G	1		1						
5/23	0000	23FD052314-03	QC	_	_	S0	G	1		1						
5/23	0000	23FD052314-04	QC	_	_	SO	G	1			1					
4 DELIN	OUICUED D	w.		DATE			INAF	145	FOEIVED DV						DATE	TIME
1. RELINQUISHED BY				DATE			IME		ECEIVED BY						DATE	TIME
	2. RELINQUISHED BY						IME		ECEIVED BY						DATE	TIME
3. RELINQUISHED BY				DATE		T	IME	3. R	ECEIVED BY						DATE	TIME
COMMEN	ITS															

Rite in the Rain®
ALL-WEATHER WRITING PAPER

Jim Goerdt Project Manager/Environmental Scientist

661 Andersen Drive, Pittsburgh, PA 15220-2700 Tel 412.921.8425 Cell 412.443.0244 Fax 412.921.4040 james.goerdt@tetratech.com www.tetratech.com

Project	

CONTENTS PAGE REFERENCE DATE

Clear Vinyl Protective Slipcovers (Item No. 30) are available for this style of notebook. Helps protect your notebook from wear & tear. Contact your dealer or the J. L. Darling Corporation.

10-6-12 16- Jim Goerd (FOL) 1230 - 76 to some 33 KL- Kevin Losekamp (Geo) to beasin langua of sample locations in the vicinity of 1F. John Flowd (Tech) B-36 and associated parking lot, moluding SB034-036, Utility GPS. Locations 58001-006 plaitini lla eracu located over steep kill side. All were silled Sacre approx 5-10 beek so they were accession by DPP & are now * Work at Swow 33 located on the vers partina lot along tree ni belgma sompleted in son junction w/ work at other s, bes at NSA Crarla

-Locations 58034-036

may have been adjusted

Statistic position to

axisting underground

utilities. At most

moved - 3-4 beet from

proposed location.

-SB034-026 are located just north of .B.36 in apphalt. XZ/JF spent the entire day collection soil samples via OPT at locations SBODI-006 and SBODI-036.

Strong petrolem-like odor detated in samples at location 58006 x 58024.

1330 - 26 arrives on site to assist u/ the last couple of samples.

1630-Return som plas to Fill trailer o Place in Fridge.

1700 - Personnel anit

10-8-13 10-01-13 DD45- Arrive a Field All sompler collected Frailer. KY/17 already to Empirical Labs. on site sin the process.

So prepping for sw/SD

Sampling of sumu 23. End of Shift 0830- XL/14 convoider to Sumu a3. DPT to cold patch appraise locations 58034-026. No sw/so sample rostanos Co ditellas Sw/50007. Tris is a Ven rocky area w/ no Sædiments o would only corrected during location rear the top De in with go

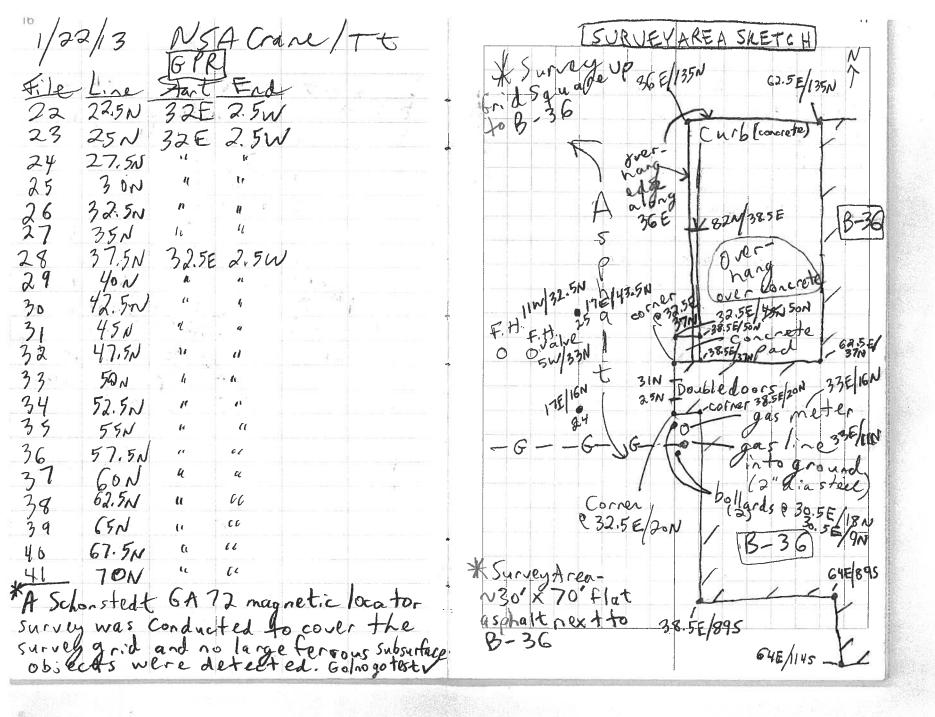
10/29 10/31 1200: KL at site to Cay out Hund Huge Cocations 1545. KL Completed Cay out OF Hand Auger Cocations 1600: Call JG about SB 009 Hendwall Missing. He Sent pictures of Hendwall. 1615: Ke Cocated missing headwall and updated Cocation.

1600: KC at site to Start Collecting Surface soil samples at SBH, 15,16,17. No Hund Ean be Used due to very Shallow bedax 130 KL offsite

Nov 1-0700 Ke Onsite gutnering Sample bottlemarco 0300 At Sum 23. Need a new hand Auger, 1000: Call Jim G. 1 Scott S. abt Hand Auger delivery. 1045: Hand Auger delivery. Ice to Fite to begin Soil Collection Hund Auger Complete. To 1615: trailer to Ship Samples. 1745: Cenve traviler for Fedex.

Nov 2nd 0800. Ke ongrite to Excorecon Possible all Countions. a No discernable rd except For Utility Cut 300 Yurds downstream from SBAL. SBODI 0945: KL offsite for shift.

November 51-


0830: KL + 13RG/ Survey) Onsite

1230: All points surveyed.

22/13 NSA Crane/Tt This Jim Coffman and Kevin Lose Ramp at visitor's pass office @ 0830 to obtain badge for Coffman. Proceed to job trailer (Tt) and to see Tom Brent (Envi Coord.) Loadup auxillary survey equipment of head to stumus tor glophy si cal survey today Grophy sical Survey Ob: Slarch For possible UST (steel) shown on historical plans Establish 30' x 70' survey (grid) area - 5 ft. marks - for geophys using 2.5 ft line spacing. ferform EM61-mke I survey over grided survey a real after manufacturer's recommended setup.

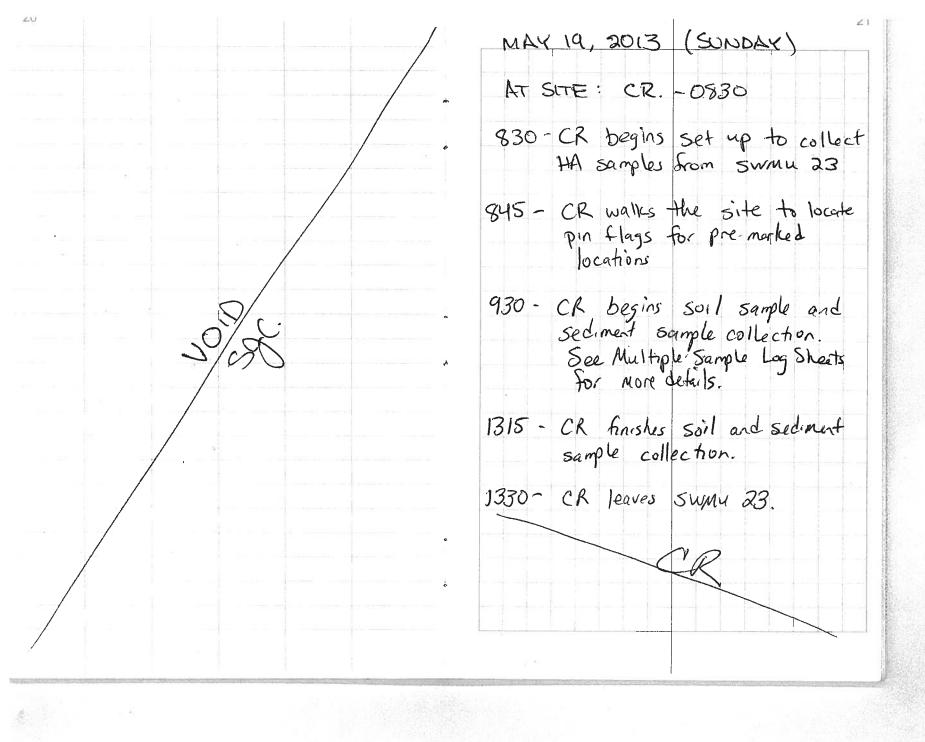
14 1/22	/13	NSA	1 000	ne/TE
		The second secon		
Glanic	is t	MG	Whe	elmode (0.61)
Differe	ntial	Mode	Data	
OE	ON	70 N		
2.5E		ON	İ	
5 E		70N		
7.5E		ON		
10 E	01			
12.5E	70N	ON		
15E	ON	70N		
17.5E	70N			
20 =	70N	JON		
22.5E	0 %	70 N		•
27.5E	702	DN		
20 -	1	1	End	next to bollard
10 12	7010	AD NO	for a	ac materiara
GPR	Surve	s cond	ucted	as meter across grid
	1	SPR		acion, gina
GPR s	stem	GS	SI S	1R2000 L400MHZ
syste	in eg	u. po e	d wit	L 400 MHZ
anten	na.	325	cans/s	,6005
time u	vindo.	u set	, mai	infacturers.
(Clomi	nend	ations	tollo	wed for
calib	ratio	122 /2	etup.	Slow no lking pace for survey.
	MISSORE WASHINGTON			401. 3MI ASS.

the land of	FPR		
File line	Start	End	
10	ON	70N	M's 0 ~ 10.
2 2,5E	U	4	
3 51	a	4	
4 7.5E	a	, le	
5 10E	le	17	- F
6 /2.5F	9	"	
7 8 17.5 E 9 26 €	a	E-	
8 17.5E	2 1	7 ,	
	3N	70N	
10 22.5E	dn	10W	*
12 27,5€	ON	200	
13 30E	ON	70N	
14 2.5N	32.5E	2.5W	M5 12 +
15 5	A	" W	22.5/2.5)
16 7.5N	30E	11 56	bollard
17 100	300	11	.,
18 12.5N	30E	11	
19 152	11	11	
20 17.5N	li l	n	
21 200	32,5E	n	
1.			

1/22/13 NSA Crane/Tt About a I he delay topay oversited for h lift out of way for Survey to be conducted. Glophysical egyppent packed site sketch and survey tie; a Completed by about 4:30 pm. and head offsite, for FedEx dropoff of geophysical Survey equipment, a Blooking ton. DAC

MAY 18, 2013 (SATURDAY)
NOA CRANE SITE 23

AT SITE: SIC/CR


AM: CLOUDY, WARM (LT RAIN)

NOTE:

PAGE [11. AFTER WORK AT UXO 7. STC/CR WENT TO SITE 23.

1415: AT SITE FOR PAH SAMPLING
USING DPT RIG TO TAKE SAMPLES
DUE TO HARD GRAVEL/ASPHALT
AT SURFACE. DRIVED 3 BORINGS
USING DPT RIG TO ± 41. SEE
BORING LOGS FOR DETAILS. SEE
SAMPLE LCG SHEETS AND COES
FOR SAMPLES TAKEN
1530: DONE WITH BORINGS AND
RETURN TO SITE TRAILER
1600: AT TRAILER PLACE ICE OW
SAMPLES AND PREPARE FOR
SUNDAYS WORK.

SPC.

5-33-14 0800 - AZ Field Frailer 1 prepping for Sum 23 / Sumpline 0835 - At Sum 23 Showing NP & SC Sample Tocations. Locations 58059 8 58082 av mand avoir locations Delianson 190 JC & NP remain at site to collect samples. 16 to Swmu 3. 1015 - Pigal op led samples to analyze Via XRF. FD-01 SB089-0204 670 FD-02 SB083-0406 FD-03 58089-0002 24/20 FD-04 5 8059-0204

5 BOEN - 1500 2 -XRF readina £ 50a ppm. Border 22 Otra samples. 55053-000A 287 & 845 pm Soidered on other samples 55087-0002 9220 bbm - 222 Toca -10-(SUP-OUX) 5B092. but with XRT readings Aven appare voi maled as far as liad goes 1430 - 685 D new vocadions. 1500 - Oemo

Page of Sample ID No.: 2355049 - 0007 **Project Site Name:** Project No.: 112IG06018 Sample Location: 2358 Sampled By: Surface Soil

Subsurface Soil C.O.C. No.: Sediment Type of Sample: [] Other: [] Low Concentration **∏** High Concentration [] QA Sample Type: Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Date: Time: 140 CLAY /ROCKS 0-2 Brown GrAB Method: Monitor Reading (ppm): COMPOSITE SAMPLEDATAS Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: **Monitor Readings** (Range in ppm): SAMPLE GOLLECTION INFORMATION: Analysis **Container Requirements** Collected Other OAHS 402 OBSERVATIONS/NOTES MARE Cincle if Applicable: Signature(s):

Project Site Nar Project No.: 2 Surface So Subsurface Sediment Other: QA Sample GRAB SAMPLE DAI Date: 3 -) 1 -	oil e Soil e Type:	23 112IG06018 Depth Interval	Color	Sample Loc Sampled By C.O.C. No.: Type of San Low Con High Co	nple: ncentration ncentration Sand, Silt, Clay, Mo	\$ 0
Method: Monitor Reading (ppn	G	6-2'	Brown	BROWN	CLrry D	ry]
COMPOSITE SAMPLE						
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLERGOLLEGIF	ON INFORMA Analysis		Container Requ	I Irements	Collected	Other
	PAHS			07	V	
OBSERVATIONS AN	ONES PAR AND			MAR		
Circletti Applicables MS/MSD	Duplicate II	No.:		Signature(s):	ret	

Page

of

13 Project Site Name: Sample ID No.: 2355051 - 0507 Sample Location: 735805 Project No.: 112IG06018 Sampled By: Surface Soil C.O.C. No.: [] Subsurface Soil [] Sediment Type of Sample: [] Other: I Low Concentration ∏ High Concentration [] QA Sample Type: GRAE SAMPLE DATA: 3-21-14 Depth Interval Date: Color Description (Sand, Silt, Clay, Moisture, etc.) Time: 120 0-2' SOFT moist Method: GRAB Brown Monitor Reading (ppm): SOMESTIFE SAMPLE BALLA Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: **Monitor Readings** (Range In ppm): SAMPLE GOT LECTION INFORMATION: **Analysis Container Requirements** Collected Other 407 AH OBSERVATIONS/MOTES: 76-026 MS/MSD **Duplicate ID No.:**

Page___ of 23 Project Site Name: Sample ID No.: 23.55052 - 0007 Sample Location: 2358052 Project No.: 112IG06018 Sampled By: Surface Soil C.O.C. No.: Subsurface Soil □ Sediment Type of Sample: [] Other: [] Low Concentration [] High Concentration [] QA Sample Type: GRACICAMPLEDATA 7-21-14 Depth Interval Description (Sand, Silt, Clay, Moisture, etc.) Date: Color SOFT CLAY - LITTLE BIT Time: 6.2' Method: BROWN Monitor Reading (ppm): COMPOSITE SAMPLEDATA SERVICE DE L'ESPANA DE L'ESPANA DE L'ESPANA DE L'ESPANA DE L'ESPANA DE L'ESPANA DE L'ESPA Date: Time **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected **Analysis** Other 402 PAH OBSERVATIONS/NOTES: RETUSAL @ 1.01 Circle if Applicable : Signature(s):

| Despicate ID No.:

Project Site Nan Project No.: X Surface So Subsurface Sediment Other: QA Sample	oil e Soil	23 112IQ06018		Sample ID No.: 235553 - 0002 Sample Location: 235553 - 0002 Sampled By: LuD C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration				
Date: 3-2(-1) Time: 165	4	Depth Interval	Color Brown/	Description (Sand, Silt, Clay, M	loisture, etc.)		
Method: (3 Monitor Reading (ppm		6.2'	Brown/ WHITE					
COMPOSITESAMPE Date;	Time	Depth Interval	Color	Description ((Sand, Silt, Clay, N	loisture, etc.)		
Method:								
Monitor Readings (Range in ppm):								
SAMBRE OCULERTO	ON INFORMA Analysis	IONE I TO THE REPORT OF THE PERSON OF THE PE	Container Requ	irements	Collected	Other		
	PAHS		1463		V			
OBSERVATIONS/NO		Grave (MAR				
0-6"=								
6"-12" REFUSAL		Clay (Gro	vel					
Citalesi Applicable: MS/MSD	Duplicate ID) No.:		Signature(s):	124			

Page_

23 Sample ID No.: 2355054-0007 Project Site Name: Sample Location: 2358054 Project No.: 112IG06018 Sampled By: Surface Soil

Subsurface Soil C.O.C. No.: [] Sediment Type of Sample: □ Low Concentration [] Other: High Concentration [] QA Sample Type: HAVE BAVIET FAIRS Description (Sand, Silt, Clay, Moisture, etc.) Date: 3-21-14 Depth Interval Color Time: 0-21 Method: Monitor Reading (ppm): oomaesinesamereeyaree Description (Sand, Silt, Clay, Moisture, etc.) Color Time **Depth Interval** Date: Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Collected Other Analysis **Container Requirements** PAHS 407 PEFUSAL @ 1.0' BGS Pircle if Applicable: Signature(s): 11.626 MS/MSD **Duplicate ID No.:**

Page___ of _

Project Site Nar Project No.: Surface So Subsurface Sediment Other:	oil e Soil	23 112IG06018		Sample ID No.: 2355055-0007 Sample Location: 2358055 Sampled By: C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			
amendeday.							
Date: 3-21 Time: 10 Method: Monitor Reading (ppn	35 G	Depth Interval	Brown	Sort C	(Sand, Silt, Clay, Mol	sture, etc.)	
COMROSITESAMRI Date:		Depth Interval	Color	Description	(Sand, Silt, Clay, Mo	sture, etc.)	
Method:		The second					
Monitor Readings (Range in ppm):							
(अत्राप्त्रवाचल्याम्यकार्	ON INFORMA Analysis	(COD)	Container Requ	airements	Collected	Other	
	PAHS		/40				
			641				
oeselvai(*)ns///	Paes and a			MAPENTANA			
Chale H'Applicable : MS/MSD	Duplicate IC			Signature(s):	WH		

Page_ Sample ID No.: 2355056-0007 Project Site Name: Sample Location: 2338056 Project No.: 112IG06018 Sampled By: Surface Soil C.O.C. No.: Subsurface Soil Sediment Type of Sample: [] Low Concentration ☐ Other: High Concentration QA Sample Type: EGYAE SAMELEGATAA Date: 3-24-14 Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Time: 6-2' /ROOTS Method: Brown Monitor Reading (ppm): COMPOSITE SAMPLE DATALL Date: Description (Sand, Silt, Clay, Moisture, etc.) Time **Depth Interval** Color Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION : **Container Requirements** Collected Analysis Other 402 U PAHS oeservations/andiese REFUSAL @ 1.5' Circle if Applicable Signature(s): Mull MS/MSD **Duplicate ID No.:**

SBOST

of

Page_ 23 Sample ID No.: 2355057 - 000 Z **Project Site Name:** Sample Location: 2358057 112IG06018 Project No.: Sampled By: Surface Soil C.O.C. No.: Subsurface Soil Sediment Type of Sample: [] Other: [] Low Concentration [] High Concentration [] QA Sample Type: E SYATISAMELE DATAPINE Description (Sand, Silt, Clay, Moisture, etc.) 3-21-14 Depth Interval Color Date: Time: 1015 CLAY, Few ROLKS 0-2' Brown Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA Description (Sand, Silt, Clay, Moisture, etc.) Date: Time Depth Interval Color Method: Monitor Readings (Range in ppm): Same versor eginon niforinations **Container Requirements** Collected **Analysis** Other PAHS 407 1 OBSERVATIONS//NOTES: Circle (Abolicable) Signature(s): newly MS/MSD **Duplicate ID No.:**

Project No.: Surface So. Subsurface Sediment Other: QA Sample	Surface Soil Subsurface Soil Sediment Other: QA Sample Type: SHAB SAMPLE DATA Date: 3-21-14			Sample ID No.: 235558 - 0007 Sample Location: 235658 - 0007 Sampled By: C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			
	010	Depth Interval	3 COUN	MOIST 50	Sand, Silt, Clay, Moi	sture, etc.)	
COMPOSITE SAMPLE		Depth Interval	Color	Description (Sand, Silt, Clay, Moi	eture etc)	
Date.		Depai interval		Description.	Janu, Ong Jay, mo.	sture, etc.,	
Method:							
Monitor Readings (Range in ppm):							
SAMPLE GOLLEGITO							
	Analysis		Container Rec	uirements	Collected	Other	
	PAH 5		4	7			
oeservationsvag)TES HARA						
Circle i Applicable : MS/MSD	Duplicate ID	No.:		Signature(s):	UL		

Page___ of Sample ID No.: 2355 059 - 000 Z Project Site Name: Sample Location: 2350059 112IG06018 Project No.: Sampled By: C.O.C. No.: Surface Soil Subsurface Soil Type of Sample: ∏ Sediment [] Low Concentration **∏** Other: ☐ High Concentration [] QA Sample Type: GRADSIANDES PATABOLICA Description (Sand, Silt, Clay, Moisture, etc.) Depth Interval Color Date: ROCK/ CLAY MIX Time: 1005 Brun 0-2 Method: Monitor Reading (ppm): DOMEST SAMPEDATE TO THE RESIDENCE OF THE PROPERTY OF THE PROPE Description (Sand, Silt, Clay, Moisture, etc.) Depth Interval Color Time Date: Method: Monitor Readings (Range in ppm): SAMPLE COLUECTION INFORMATION: **Container Requirements** Collected Other **Analysis** V DAH3 462 OBSERVATIONS/(NOTIES: Circle Applicable Signature(s): Mul **Duplicate ID No.:** MS/MSD

Page___ of _ 23 Sample ID No.: 2355 060 - 6002 **Project Site Name:** Sample Location: 2358060 112IG06018 Project No.: Sampled By: 100 C.O.C. No.: ★ Surface Soil Subsurface Soil Type of Sample: Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment [] Low Concentration [] Other: High Concentration [] QA Sample Type: GRABISAMPLE DATAS Description (Sand, Silt, Clay, Moisture, etc.) Color Depth Interval 3.21-14 Date: Brown Gry Time: CLAY 0-2' Method: Monitor Reading (ppm): GOMESSIESAMPE DAEA Description (Sand, Silt, Clay, Moisture, etc.) Time **Depth Interval** Color Date: Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Other **Container Requirements** Collected Analysis 402 PAHS OBSERVATIONS/NOTES: PETUSAL @ 10" Circle i Applicable Signature(s): 7L.W14 MS/MSD **Duplicate ID No.:**

of Sample ID No.: 2355061-6007 Project Site Name: Project No.: 112IG06018 Sample Location: 2355061 Sampled By: Surface Soil C.O.C. No.: Subsurface Soil Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration HERVE BANGE BANGE Description (Sand, Silt, Clay, Moisture, etc.) Depth Interval Color 0945 Time: LTBRW MOIST 6.21 Method: G Monitor Reading (ppm): COMPOSITESAMPESDATA Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMBERGO DESTON NEORMATION **Analysis Container Requirements** Collected Other 402 PAH OBSERVATIONS/MOTES: 16-W4 MS/MSD **Duplicate ID No.:**

Sample ID No.: 2358067-0002 23 Project Site Name: Sample Location: 235B062 Project No.: 112IG06018 Sampled By: Surface Soil C.O.C. No.: Subsurface Soil Type of Sample: [] Sediment □ Low Concentration [] Other: | High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) 3-21-14 Depth Interval Color Date: 0930 Time: DK CLAY | TINY ROCKS 0-2' Method: G BROWN Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Color Depth interval Date: Time Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Collected Other **Container Requirements** Analysis 407 PAHS MAP: **OBSERVATIONS / NOTES:** RETUS AL @ 1.0' Signature(s): Circle if Applicable: 76-624 MS/MSD **Duplicate ID No.:**

					raye	0		
Project Site Nat Project No.: Surface So Subsurface Sediment Other:	oil e Soil	23 112IG06018		Sample Local Sampled B C.O.C. No. Type of Sa [] Low Co		-600 Z		
GRADISAMRKERTA								
	11-14	Depth Interval	Color	Description (Sand, Silt, Clay, Moisture, etc.)				
Time: Method: Monitor Reading (ppr	(55 6. m):	6-2	DIK Brown	SOFT CLAY / ROCKS				
ednisalleathir	EDARA							
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)		
Method:	1 10 15 A. 1							
Monitor Readings (Range in ppm):								
সুখ্যাগুৰুল্ভিত দুলুৰ্ভ্যা	ON INFORMA Analysis		Container Requi	Irements	Collected	Other		
	Ailaiysis					Oulet		
	PAH		140.	&	V			
Deservations (A)	OTESTE			MATERIA, SISTER				
Pireis i Applicable				Signature(s):				
MS/MSD	Duplicate II) No.:		71.	1111			

					rage		
Project Site Nar Project No.: Surface So Subsurface Sediment Other: QA Sample	oil e Soil	73 112IG06018		C.O.C. No. Type of Sa [] Low Co		-0204 L	
BEVELSANDESDA							
Date: 3.21	-14	Depth Interval	Color	Description (Sand, Silt, Clay, Moisture, etc.			
Method: Monitor Reading (ppn		२-५′	BROWN	ROCKS			
COMPOSITESAME Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)	
Method:							
Monitor Readings (Range in ppm):							
S/MUBISONEIGH	ON INFORMA Analysis		Container Requ	irements	Collected	Other	
		Regivie kondinations			V		
	PAH		140				
	his water respective and		in di (didiri tira a Hithigani) dhima ni Shekatika ni She	Lange Construction of the Construction Const	enconcidi duktide – plantent ferbullarenda		
oeservations an							
erder Abolicable MS/MSD	Duplicate ID	No.:		Signature(s):	: WH		
				1	, UUG		

Project Site Na Project No.:	me:	23 112 G06018		Sample ID No.: 2358064.6406 Sample Location: 2358064 Sampled By: (W) C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			
☐ Surface Soil ☐ Subsurface Soil ☐ Sediment ☐ Other: ☐ QA Sample Type:							
GRAFISMILIFIA							
Date: 3-2(-14 Time: 1205 Method: 6 Monitor Reading (ppm):		Depth Interval	1 14 1000		Sand, Silt, Clay, Moisture, etc.)		
eomrasiieseme	_						
Date:	Time	Depth Interval	Color	Description (S	and, Silt, Clay, Moi	sture, etc.)	
Method:							
Monitor Readings (Range in ppm):							
Sample oo eyaka		7(0)\E					
	Analysis		Container Requ	irements	Collected	Other	
PAH			1403		V		
						14. 当是 7通 12. 上次是 基	
observationska	OTIES:18						
RETUR	sac Co	5'			oute turmout novel place for some present, future, presen		
शास्त्राम् अपूर्वाद्यागस्य				Signature(s):	111		
MS/MSD Duplicate ID No.:				Signature(s): C-MU			

					Page	of	
Project Site Name: 23 Project No.: 112IG06018 Subsurface Soil Sediment Other: QA Sample Type:			Sample L Sampled C.O.C. N Type of S		o.:		
GRAB SAMPLE DAT	A:		14 14 14 14 14 14 14 14 14 14 14 14 14 1				
Date: 3.21-14 Depth Interval		Color	Description (Sand, Silt, Clay, Moisture, etc.)				
Method: Monitor Reading (ppm		0-2	BLACK	ROCKS	/Thy BI	f of Lay	
GOMPOSITESAMP				-			
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)	
Method:				V.			
Monitor Readings (Range in ppm):							
Sample Golffei	i ON INFORMA Analysis	Ner:	Container Requ	irements	Collected	Other	
	61	- NO SUR		Z-			
-SAMPL	E (S	MAINLY	Rocks				
Circle if Applicable:				Signature(s):	, , , , ,		
MS/MSD	Duplicate II	No.:	10)	11/	Will		

23 Sample ID No.: 23550 66 - 0007 Project Site Name: Sample Location: SRD Project No.: 112IG06018 Sampled By: Surface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: □ Low Concentration Other: [] QA Sample Type: [] High Concentration GRAE SAMPLE DATA: 3-71-14 Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Date: DKBrown Time: ROCKS 0-2 Method: Monitor Reading (ppm): GOMPOSTI ESAMPETOATATE Depth Interval Date: Time Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE GOLLECTION INFORMATION: **Container Requirements** Collected Other **Analysis** 407 DAH MAP: Signature(s): Circle if Applicable: MS/MSD **Duplicate ID No.:**

Page.

of

23 Sample ID No.: 2358066-0204 Project Site Name: Sample Location: 53066 Project No.: 112IG06018 Sampled By: Surface Soil C.O.C. No.: Subsurface Soil ☐ Sediment Type of Sample: [] Other: □ Low Concentration [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Interval Color Time: LT CLAY - MOIST BROWN Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Analysis Collected **Container Requirements** Other PAH 402 OBSERVATIONS/NOTES: MARS Circle it Applicable: 26a2CL MS/MSD **Duplicate ID No.:**

Page_ 23 Sample ID No.: 235BD66-0406 Project Site Name: Sample Location: 560 Project No.: 112IG06018 Sampled By: C.O.C. No.: □ Surface Soil Subsurface Soil Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment Type of Sample: [] Low Concentration [] Other: [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: 3.21-14 Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Interval Color 1240 Time: MOIST Method: (9 SILTU CLAY Monitor Reading (ppm): OOMPOSITESAMPETOAVASIIS Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE GOLUECTION INFORMATION **Container Requirements** Collected **Analysis** Other PAH 402 OBSERVATIONS/AVOTES: 1997 Circle II Applicable: Signature(s): **Duplicate ID No.:** MS/MSD 7. Wild

	The second				Page	of
Project Site Nam Project No.: Surface So Subsurface Sediment Other: QA Sample	oil e Soil	23 112IG06018		Sample Loc Sampled By C.O.C. No.: Type of Sar Low Co	No.: 2355067 cation: \$6067 y:	- 8062
	1.14 300 Brass n):	Depth Interval	Color DARK BROWN Color	Description ((Sand, Silt, Clay, Mol	
Method: Monitor Readings (Range in ppm):	N. INFORMA	T)				
	Analysis PDH		Container Requ		Collected	Other
DUP C	OUICT	ED		MAP. Signature(s):		
MS/MSD	Duplicate ID	0 No.: 1-032114		74.	024	

Page_

of

Sample ID No.: 2358067-6204 Project Site Name: Sample Location: 5806. Project No.: 112IG06018 Sampled By: C.O.C. No.: □ Surface Soil Subsurface Soil Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: High Concentration GRABISAMPICADAVAS (1) TILLA TORRESTE EL ESTADA EL ESTADA (1) EL ESTADA (3-2114 Description (Sand, Silt, Clay, Moisture, etc.) Date: **Depth Interval** Color 305 Time: LT MOIST CLAY Method: Brown Monitor Reading (ppm): Composites miles days Date: Time **Depth Interval** Description (Sand, Silt, Clay, Moisture, etc.) Color Method: Monitor Readings (Range in ppm): SAMPRE GOLDE COTION INFORMATION: **Analysis Container Requirements** Collected Other 402 Dan OBSERVATIONS/NO/IES STATEMENT OF THE PROPERTY Circle if Applicable: Signature(s): 76.024 MS/MSD **Duplicate ID No.:**

Page_ of 23 Project Site Name: Sample ID No.: 235B067 - 0406 Sample Location: 5300 112IG06018 Project No.: Sampled By: C.O.C. No.: □ Surface Soil Subsurface Soil
Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration GHAB SAMPLEDAPA Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Date: Time: LT Brown Method: ORPINGE Monitor Reading (ppm): BOMPOSTESAMRATOMANA Date: Time **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Method: **Monitor Readings** (Range in ppm): SAMPLE COLUECTION INFORMATION: **Container Requirements Analysis** Collected Other PAR 201 DESERVATIONS ANOTIES: Hull Circle if Applicable: Signature(s): **Duplicate ID No.:** MS/MSD

Page of Sample ID No.: 2355068 - 000 7 Project Site Name: Sample Location: 58068 Project No.: Sampled By: Surface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: [] Low Concentration □ Other: [] High Concentration [] QA Sample Type: ENGEAME PALA PERMENTING THE PROPERTY OF THE PR 7.21-14 Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Time: HALF POUCS 0-21 GRAY Method: Monitor Reading (ppm): <u>Paragentes incertion</u> Date: Time **Depth Interval** Color Description (Sand, Siit, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Container Requirements** Analysis Collected Other 402 OAH DBSERVATIONS (NOTES) N-WCC Circle H Applicable 1997 Land 1997 L MS/MSD **Duplicate ID No.:**

		NOTE A SECTION FOR EACH OF THE			cadilla a sum Fag	3UI
Project Site Nar Project No.: Surface So Subsurface Sediment Other:	il ∍ Soil	23 112IG06018		C.O.C. No.: Type of San Low Cor	nple:	8-0204
erisamets 77						
Date: 2-21	14	Depth interval	Color	Description (S	Sand, Silt, Clay, Mo	Isture, etc.)
Time:) \(\square\) Method: Monitor Reading (ppn		2.4'	Gray	MAINLY	Rocks. Clay - mo	MINOR
	PARK STATE OF THE					
Date:	Time	Depth Interval	Color	Description (S	Sand, Silt, Clay, Mo	Isture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SMINITED OF THE CONTROL	NINFORMA Analysis	j)(0);\$41));{ 4 [[[]]]	Container Requ		Collected	Other
						Other
	PAH		(4)	50		
obesignavilenskav						
				Signature(s):	11.0	
MS/MSD	Duplicate II) No.:		16	Wes	

	MILITAR ENGLISH		KUME BEWEEKE	esta ksaturasa Ki	ray	
Project Site Name: Project No.: Surface Soil Subsurface Soil Sediment Other: QA Sample Type:			Sample Lo Sampled E C.O.C. No Type of Sa		- 040b	
Date: 3-21		Depth Interval	Color		(Sand, Silt, Clay, Mo	
Time: (?	340 (1	4-6*	Gray	MOSTL	y Rocks,	TRUY
Monitor Reading (ppn		*	Glay	BIT	OF CLAY	-moist
GOME BILLESAME						
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings (Range in ppm):						
Sample College		NOVE IN STATE				
	Analysis		Container Req	uirements	Collected	Other
	PAH		140	2	V	
OBSERVATIONS AN						
* REF	USAL	@ 4.51				
elidei#Abaligabla				Signature(s):	111	
MS/MSD	Duplicate II	D No.:		10/6	all	

Project Site Na Project No.: [X] Surface [] Subsurfac [] Sediment [] Other: [] QA Sampl	Soil e Soil e Type:	SA Crane - SWMU 23 112IG06018		Sample ID No.: Sample Location Sampled By: C.O.C. No.: Type of Sample: [] Low Concent [] High Concer	Goerdt 042014-00 tration	
GRAB SAMPLE DA	30K. F. R. F. F. R. F. F. F. F. F. F. F. F. F. F. F. F. F.					
Date:	4/17/2014	Depth Interval	Color	Description (Sand		isture, etc.)
Time:	1625	0-2'	Lt brn	soil with some clay	damp	
Method: Monitor Reading (pp	m):					
COMPOSITE SAMP						
Date:	Time	Depth Interval	Color	Description (Sand	Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECT	ION INFORMATION Analysis	oN:	Container Rec	quirements C	Collected	Other
	Pb		(1) 8 oz jar		Yes	
OBSERVATIONS / N	IOTES:			MAP:		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate ID N	No.:				

Project No.: [X] Surface Soil [] Subsurface Soil [] Sediment [] Other: [] QA Sample Type:		NSA Crane - SWMU 23 112IG06018		Sample ID No.: 23SB076 Sample Location: 23SB076-0203 Sampled By: Goerdt C.O.C. No.: 042014-001 Type of Sample: [] Low Concentration [] High Concentration			
GRAB SAMPLE DAT	TA:						
Date:	4/17/2014	Depth Interval	Color	Description (Sand, S	ilt, Clay, Moi	sture, etc.)	
Time:	1625	2-3'	Org	clayey soil damp			
Method:	НА						
Monitor Reading (ppr							
COMPOSITE SAMP	LE DATA:			•			
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moistu		sture, etc.)	
Method:							
Monitor Readings (Range in ppm):							
SAMPLE COLLECT	munumidan arang salar persentakan salar	ON:	A		llected		
	Analysis		Container Rec	Quirements Co.	lected	Other	
	Pb		(1) 8 oz jar		Yes		
OBSERVATIONS / N	IOTES:			MAP:			
Circle if Applicable:				Signature(s):			
MS/MSD	Duplicate ID I	No.:		Signatura(s):			

Project No.: [X] Surface Soil [] Subsurface Soil [] Sediment [] Other: [] QA Sample Type: GRAB SAMPLE DATA: Date: 4/17/2014 Time: 1645		NSA Crane - SWMU 23 112IG06018 Depth Interval Color 0-2' Lt brn		Sample ID No.: 23SB077 Sample Location: 23SS077-0002 Sampled By: Goerdt C.O.C. No.: 042014-001 Type of Sample: [] Low Concentration [] High Concentration Description (Sand, Silt, Clay, Moisture soil with some clay damp		
Method: Monitor Reading (ppr	HA HA					
COMPOSITE SAMP					agent the entire of upon	
Date:	Time	Depth Interval	Color	Description (Sand	Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECT	ON INFORMATION Analysis	on:	Container Re	equirements (Collected	Other
	Pb		(1) 8 oz jar		Yes	
OBSERVATIONS / N	OTES:			MAP:		
Circle if Applicable: MS/MSD Yes	Duplicate ID I	No.:		Signature(s):		

Project Site Na Project No.: [X] Surface [] Subsurface [] Sediment [] Other: [] QA Sample GRAB SAMPLE DA Date: Time:	Soil ee Soil le Type:	SA Crane - SWMU 23 112IG06018 Depth Interval	Color	Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: Low Concentre High Concentre Description (Sand, Soil with some clay	Goerdt 042014-001 ation ration	
Method:	НА					
Monitor Reading (pp						
COMPOSITE SAME	LE DATA:					111
Date:	Time	Depth Interval	Color	Description (Sand, S	ilt, Clay, Mois	ture, etc.)
Method:	1990					
Monitor Readings (Range in ppm):						
Samprescoureou	ION INFORMATI Analysis	ON:	Container Req	uirements Co	llected	Other
	Pb		(1) 8 oz jar		Yes	
OBSERVATIONS / N			и, , н	MAP; ,	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP	
Refusal due to bedro Circle if Applicable: MS/MSD		No.:		Signature(s):		
MS/MSD	23FD041714-0	No.:				

Project Site Name: Project No.: [X] Surface Soil [] Subsurface Soil [] Sediment [] Other: [] QA Sample Type:		NSA Crane - SWMU 23 112IG06018		Sample ID No.: 23SB079 Sample Location: 23SS079-0002 Sampled By: Goerdt C.O.C. No.: 042014-001 Type of Sample: [] Low Concentration [] High Concentration		
GRAE SAMPLE DA	TA:					
Date:	4/17/2014	Depth Interval	Color	Description (Sand,	Silt, Clay, Mois	sture, etc.)
Time:	1650	0-2'	Lt brn	soil with some clay	damp	
Method:	HA					
Monitor Reading (ppr						
COMPOSITE SAMP	LE DATA:			13,15, 1		
Date:	Time	Depth Interval	Color	Description (Sand,	Silt, Clay, Moi:	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECT	ON INFORMATION Analysis	9N:	Container Rec	quirements Co	ollected	Other
	Pb		(1) 8 oz jar		Yes	
OBSERVATIONS / N	OTES:			MAP:	41	
Refusal due to bedro						
Circle if Applicable:				Signature(s):	and the state of	na Carlon
MS/MSD	Duplicate ID I	No.:				

Project No.: 1120 [X] Surface Soil [] Subsurface Soil [] Sediment [] Other: [] QA Sample Type:		SA Crane - SWMU 23 112IG06018		Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [] Low Concented [] High Concented	Goerdt 042014-00	
GRAB SAMPLE DAT						
Date:	4/17/2014	Depth Interval	Color	Description (Sand, S		sture, etc.)
Time:	1640	0-2'	lt brn	clayey soil	damp	
Method: Monitor Reading (ppr	HA					
COMPOSITE SAMP	II):					
THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN						
Date:	Time	Depth Interval	Color	Description (Sand, \$	3ilt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECT	ON INFORMATION Analysis	ON:	Container Req	juirements Co	ollected	Other
	Pb		(1) 8 oz jar		Yes	
OBSERVATIONS/N				MAP:		
Refusal due to bedroc Collected in location j		ver cliff		Signature(s):		
	1	1945		oignature(s):		
MS/MSD	Duplicate ID I	No.:				

Project No.: [X] Surface Soil [] Subsurface Soil [] Sediment [] Other: [] QA Sample Type:		NSA Crane - SWMU 23 112IG06018		Sample ID No.: 23SB081 Sample Location: 23SS081-0002 Sampled By: Goerdt C.O.C. No.: 042014-001 Type of Sample: [] Low Concentration [] High Concentration		
GRAB SAMPLE DA						
Date:	4/17/2014	Depth Interval	Color	Description (Sand, S		sture, etc.)
Time: Method:	1710 HA	0-2'	brn	soil with some clay	damp	
Monitor Reading (pp						
COMPOSITE SAMP						
Date:	Time	Depth Interval	Color	Description (Sand, S	ilt, Clay, Mol	sture, etc.)
Method:						x,117
Monitor Readings (Range in ppm):						
SAMPLE COLLECT	ON INFORMATION	ON:				
	Analysis		Container Re	quirements Co	llected	Other
Pb		(1) 8 oz jar		Yes		
OBSERVATIONS / N	OTES:			MAP:		
Refusal due to bedro Collected in location		ver cliff				
Circle if Applicable:				Signature(s):		
MS/MSD Duplicate ID No.:						

Tetra Tech NUS, Inc

PROTECT NUMBER: 112G04578 03539

MULTIPLE SAMPLE LOG SHEET

SURFACE SOIL SEDIMENT [] LAGOON / POND

SIGNATURE(S):

PAGE \ OF \

[] OTHER

PROJECT NAME: SWMU 17 Dump Area POB Bolinostion

SAMPLER (S): C. Rumer LOCATION: Swmu 23-Battery Shop

ANALYSES SAMPLE METHOD (G) GRAB (C) COMPOSITE (г)гом (н)нівн TOTAL No. OF CONTAINERS PID READING DEPTH (Ft.) SAMPLE No. SOIL DESCRIPTION 2013 2358030-0002 5/19 HA 0-2 940 Si Hychay, Brn, Moist 2-3 Clarinoist, Lt Brn, Rocky 945 2350030-0204 2358031-000 2 S. Hy Clay, Brn Roots, Moist 1005 2356032-0002 Silty Clay Brn, Roots Moist 1030 2358032-0204 Clay, Light Brn-sped, Sandstone 1035 S. Hychy, Rocks, Brown-Libry Mo st 1100 2358033-0002 0-2 1130 2358034-0002 Sitty Clay Brown, Maist Clay, Brown, Moist, Sitt 2350034-0204 1135 Rocks, Clay Dark Brn, Layer of Rebules 2358-035-0002 235B-036-0002 Rocky, Clay, Brn, Orga, Moist 1155 2368-036-0204 1200 Clay, Brn. Moist, Southing at 35 Trowel Pebblos, Wet, Drainge Way 0-0.5 1220 235D009-000C 1310 235A037-0002 Clayi Organica, Moist, Rocks Clay, Some sandstone, Minst 23513037-0204 REMARKS: 2359030 -0002 = FD05 1913-01 (MS/MSD) 50030 - Petasel at 3, 50030 Aletosal at Jet. LABORATORY: COC No.: SURBIGET Empirical 50031-11 " 1.5 (Surrounded by 5 track) (Roots)

SB033 - Refuse At 1' (Bed of Rocks) 50035- Refusal at 1" (PHALOK, ROTE OKCARGE) Areal

FDB-05 -> SD009

F	Æ
L	

Tetra Tech, Inc.

MULTIPLE SAMPLE LOG SHEET

KSURFACE SOIL

★ SUBSURFACE SOIL

[] SEDIMENT

[] LAGOON / POND [] OTHER _____

SIGNATURE(S): South

SAMPLER (S): STC/CR

PAGE (_OF)

PROJECT NAME: NSA CRANE PROJECT NUMBER: LIZG 03539 LOCATION: SWMU 23

	~ ~			_					Α	NALY	SES				
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	20 20 20	TIME	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	PAHS					SOIL GROUP #	PID READING	SOIL DESCRIPTION
2358027-0002	DPT	0-2	7/18	1436	L	G	l	-					ML	0	CLAY/SILT/GRAVEL DAMP
23SB027-0204	ti	2-4	11	1435	ل	G	- ()					S/AL	0	CLAYEY SILT/SILTY CLAY
235B028-0002	t/	0-2	£1	1440	١	G	L	1					,	0	ICLAYEYSIN GRAVEL DAMY
2358028-0204	11	2.4	ti	1445	ل	G	t	-						0	CLAYEYSILT/TR ROCK/1000
235B029-0002	17	0-2	41	1450	ا	G	1	1					ML	0	CLAY, SILT, GRAVEL DAMP SILTY CLAY, ROOTS, DARK STAIN C 3.8
23SB029-0204	13	2-4	11	1455	لـ	G							CL	0	SILTY CLAY, ROOTS, DARK
															STAIN , C 3.8
															, 1
REMARKS: DPT= Dire	ct P	ush	Tecl						PRATO	ORY:	al				COC No.: 2219

Page | of |

[] Other: [] Low Concentration	
[] QA Sample Type: [] High Concentration	
GRAB SAMPLE DATA:	
Date: 10/7 1/2 Depth Interval Color Description (Sand, Silt, Clay, Moistu	ıre, etc.)
Time: O91S	
Method: PPT Monitor Reading (ppm NA) Monitor Reading (ppm NA) Monitor Reading (ppm NA)	2016
3 (1)	
COMPOSITE SAMPLE DATA:	
Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moistu	ıre, etc.)
Method:	
Monitor Readings	
(Range in ppm):	
SAMPLE COLLECTION INFORMATION:	
Analysis Container Requirements Collected	Other
VOCs 3 40ml VOA	
Metals 1 4oz PAHs 1 4oz	
PAHs 1 4oz PCBs 1 4 oz	
TPH 1 40 ml VOA	
Sulfate/pH 1 4 oz	
TOC 1402	
	-
OBSERVATIONS / NOTES: MAP:	
Cocation on according of parking cut.	
£11	
Circle if Applicable: Signature(s): MS/MSD Duplicate ID No.:	

Page | of |

Project Site Nan Project No.:	ne:	NSA Crane SWMU 23 112G03539		Sample Lo	Sample ID No.: 2358001-1012 Sample Location: 3358001 Sampled By: KL, JF, JG			
[] Surface So [] Subsurface				C.O.C. No.				
[] Sediment				Type of Sa				
[] Other: [] QA Sample	Tuno				oncentration			
li QA Sample	r ype.			_ U mign C	oncentration			
GRAB SAMPLE DAT								
Date: 1017(1)	l	Depth Interval	Color	Description	(Sand, Silt, Clay, M	loisture, etc.)		
Time: 6930		10-15	DKBRN	CT.CC S	ilty cla	N.		
Method: OPT		10-12	V	יווכ ן		7		
Monitor Reading (ppm								
COMPOSITE SAMPL	I							
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, M	loisture, etc.)		
Method:		-						
Monitor Readings								
(Range in ppm):								
				1				
SAMPLE COLLECTION	ON INFORMA	I_ TION:						
	Analysis	***************************************	Container Req	uirements	Collected	Other		
VOCs			3 40ml VOA					
Metals			1 4oz					
PAHs			1 4oz		-			
PCBs			1 4 oz					
TPH			1 40 ml VOA					
Sulfate/pH			1 4 oz					
100			1407					
		16 						
					19			
OBSERVATIONS / NO	otes illustration			MAP:				
-								
Strong	trel	oder f	rom 10=12					
	77			1				
Circle if Applicable:				Signature(s):				
MS/MSD	Duplicate I							
	D36	> D1007 12-0	12					
i	0/\" \			1				

Page | of

re, etc.)
itt.
11,
re, etc.)
<u> </u>
Other
:

Page___ of ____

Project Site Nan Project No.:	ne:	NSA Crane SWMU 23 112G03539		Sample ID No.: 335 Boo2 - 10. Sample Location: Sampled By: KL, JF, JG		
[] Surface So	oil			C.O.C. No.:	KL, JF, JG	
X Subsurface					-	
[] Sediment				Type of Sample:	** =	
[] Other: [] QA Sample	a Tyne:			_ [] Low Concentr [] High Concent		
<u> </u> цил оатгра	= rype.					
GRAB SAMPLE DAT	A					
Date: 10/7		Depth Interval	Color	Description (Sand, S		
Time: 1000		10-12	BRN	1 / Itali	1 - 5 sm	1
Method: OP Monitor Reading (ppn		10 100	1)KW	SiltyL	lay Sa	nd
COMPOSITE SAMPL						
Date:	Time	Depth Interval	Color	Description (Sand, S	Silt Clav. Moistur	re etc.)
Duto.	11	Sopar more.	00.0.	Dodonpaon (Gana,	Jitt, Giay, incidia.	e, c.c.,
Method:				 		
Metrica.				 		
Monitor Readings				<u> </u>		
(Range in ppm):	14					
(Range in ppin).	~					
SAMPLE COLLECTS	ONUNEORMA	Tigar				
	Analysis		Container Req	uirements Co	ollected	Other
VOCs	Palaijoio		3 40ml VOA	ullelilolita	JII COLCU	Other
			1 4oz			
Metals			1 4oz			
Metals PAHs			· · · · · · · · · · · · · · · · · · ·			
			1 4 oz			
PAHs PCBs TPH	-		1 4 oz 1 40 ml VOA			
PAHs PCBs TPH Sulfate/pH			1 4 oz 1 40 ml VOA 1 4 oz			
PAHs PCBs TPH			1 4 oz 1 40 ml VOA			
PAHs PCBs TPH Sulfate/pH			1 4 oz 1 40 ml VOA 1 4 oz			
PAHs PCBs TPH Sulfate/pH			1 4 oz 1 40 ml VOA 1 4 oz			
PAHs PCBs TPH Sulfate/pH			1 4 oz 1 40 ml VOA 1 4 oz			
PAHs PCBs TPH Sulfate/pH			1 4 oz 1 40 ml VOA 1 4 oz			
PAHS PCBS TPH Sulfate/pH FCC OBSERVATIONS IN	OTES:		1 4 oz 1 40 ml VOA 1 4 oz	MAP		
PAHS PCBs TPH Sulfate/pH TQC	OTES:	20.01	1 4 oz 1 40 ml VOA 1 4 oz	MAP		
PAHS PCBS TPH Sulfate/pH FQC OBSERVATIONS / N	otes:	20.01	1 4 oz 1 40 ml VOA 1 4 oz			
PAHS PCBS TPH Sulfate/pH FQC OBSERVATIONS / N	αţ		1 4 oz 1 40 ml VOA 1 4 oz	MAP:		
PAHS PCBS TPH Sulfate/pH FQC OBSERVATIONS / N	OTES:		1 4 oz 1 40 ml VOA 1 4 oz			

Page / of /

Project Site Nar Project No.:	ne:	NSA Crane SWMU 23 112G03539		Sample ID No.: 2355003 0001 Sample Location: 235003 Sampled By: KL, JF, JG		
Surface So	oil e Soil			C.O.C. No.:		
[] Sediment	, 00			Type of Sar		
[] Other: [] QA Sample	e Type:				ncentration encentration	
GRAB SAMPLE DAT						
Date: 10/7/1)	A	Depth Interval	Color	Description (Sand, Silt, Clay, Mo	nisture etc.)
Time: 1015		_ ,		E' (1 Si)	ts Sandy Co	a y
Method: PPT		0-2	BEN	Fill-Silty Sandy clay with mostly grower		
Monitor Reading (ppn			 		7	
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Mo	oisture, etc.)
Method:						
Monitor Readings					9	
(Range in ppm):						
SAMPLE COLLECTI	ON INFORMA	TION:				
	Analysis		Container Req	uirements	Collected	Other
VOCs			3 40ml VOA			
Metals			1 4oz	1		
PAHs PCBs			1 4oz 1 4 oz	+		
TPH			1 40 ml VOA			
Sulfate/pH	,		1 4 oz			
тос			1 4 oz			
		. ,				
			-			_
OBSERVATIONS / N	OTES:			MAP:		
-11/2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-						
				1		
				1		
				1		
				1		
				1		
			3			N. Contraction
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:		. di		
	12385	100712-63	S			

Page / of /

Project Site Nam Project No.:	ne: <u>NS</u>	6A Crane SWMU 23 112G03539		Sample ID Sample Lo Sampled B		1003
[] Surface Soi [] Subsurface [] Sediment				C.O.C. No.	mple:	
[] Other: [] QA Sample	Туре:				oncentration oncentration	
GRAB SAMPLE DATA	*************************					
Date: (0/7/1		Depth Interval	Color	Description	(Sand, Silt, Clay, M	oisture etc \
Time: /025		_		Description	(Sand, Sint, Clay, W	oisture, etc.)
Method: PPT		8-10	BRN	Silti	C 1	
Monitor Reading (ppm	NA	O	, ,	Silty	Clay	
COMPOSITE SAMPL						
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, M	oisture, etc.)
Method:						
Monitor Readings						
_						
(Range in ppm):						
				7%		
		****		<u>L</u>		
SAMPLE COLLECTION						
	Analysis		Container Requ	uirements	Collected	Other
VOCs			3 40ml VOA			
Metals PAHs			1 4oz 1 4oz			
PCBs			1 4 oz	285		-
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
TOC			1 4 oz			
		•				
			*			
9		€0				12
OBSERVATIONS / NO	OTES:			MAP:		
OBSERVATIONS INC	at 12'	3".				
9						
				-		
Circle if Applicable:				Signature(s):		· .
MS/MSD	Duplicate ID N	lo.:		1		
	-					

Page | of |

Project Site Nar Project No.:	ne:	NSA Crane SWMU 23 112G03539		Sample Lo	Sample ID No.: 2355004-0002 Sample Location: 358004 KL, JF, JG		
Surface So				C.O.C. No	<u> </u>		
[] Sediment [] Other:				Type of Sa	mple: oncentration		
[] QA Sample	е Туре:				oncentration		
GRAB SAMPLE DAT							
Date: 10/7/13		Depth Interval	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)	
Time: 1350		4 3	BRN		raela/sanc		
Method: DPT		0-2	13/21	10/10 /	7 50000		
Monitor Reading (ppn COMPOSITE SAMPI							
	1						
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)	
1	1						
Method:	<u> </u>						
Maritar Dondings	 						
Monitor Readings							
(Range in ppm):				<u> </u>			
	<u> </u>						
SAMPLE COLLECTI	ON INFORMA	TION:					
	Analysis		Container Reqւ	iirements	Collected	Other	
VOCs			3 40ml VOA			-	
Metals			1 4oz				
PAHs			1 4oz				
PCBs			1 4 oz			1-	
TPH			1 40 ml VOA				
Sulfate/pH TOC			1 4 oz			-	
			1 4 oz			+	
		Ø.					
	ewektoning.						
OBSERVATIONS / N				MAP:			
2 push	estor	sample vol	une				
				İ			
Circle if Applicable:				Signature(s):			
MS/MSD	Duplicate I	D No ·	######################################	0.3			
···· ·· ·····		- 110					
1	1			i i			

Page | of | Project Site Name: Sample ID No.: NSA Crane SWMU 23 Project No.: 112G03539 Sample Location: Sampled By: KL, JF, JG [] Surface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: [] Other: □ Low Concentration [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: Date: 10/7/12 Depth Interval Description (Sand, Silt, Clay, Moisture, etc.) Color Time: 1405 Silty Clay 8-10 BON DPT Method: Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other **VOCs** 3 40ml VOA Metals 1 4oz PAHs 1 4oz PCBs 1 4 oz TPH 1 40 ml VOA Sulfate/pH 1 4 oz TOC 1 4 oz OBSERVATIONS / NOTES: MAP: Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page of

Project Site Nam Project No.: Surface Soi	- 1	NSA Crane SWMU 23 112G03539		Sample II Sample L Sampled C.O.C. No	ocation: 333 By: KL, JF	SO05-2002
Sediment Other: QA Sample	_				ample: Concentration Concentration	
GRAB SAMPLE DATA						
Date: (0/7/13		Depth Interval	Color	Description	ı (Sand, Silt, Clay,	Moisture, etc.)
Time: 14(5			- 1	C 6	March In.	eand Eit
Method: PPI		0-2	Benlary	H: (1-	Trul w/	
Monitor Reading (ppm		0	1			Clay.
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description	ı (Sand, Silt, Clay,	Moisture, etc.)
Method:						
Monitor Readings						
Monitor Readings						
(Range in ppm):						
	- 1					
		-				
SAMPLE COLLECTIO	N INFORMAT	ION:				
	Analysis		Container Requ	irements	Collected	Other
VOCs			3 40ml VOA			
Metals			1 4oz			
PAHs			1 4oz		<u> </u>	
PCBs			1 4 oz		<u> </u>	
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
тос			1 4 oz	· · · · · · · · · · · · · · · · · · ·		<u> </u>
						
			2		 	
						-
OBSERVATIONS / NO	OTES:			MAP:		
						10
3 pushes	tors	Sample vol	une			
•						
				l		
				[
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate ID	No.:		1		
				ł		

Page / of / 23530050810 Project Site Name: NSA Crane SWMU 23 Sample ID No.: Project No.: 112G03539 Sample Location: 235B005 Sampled By: KL, JF, JG [] Surface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: ∏ High Concentration GRAB SAMPLE DATA: 10/7/12 Date: Depth Interval Description (Sand, Silt, Clay, Moisture, etc.) Color i 435 Time: BRN PPT Method: Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Collected **Analysis Container Requirements** Other **VOCs** 3 40ml VOA Metals 1 4oz PAHs 1 4oz **PCBs** 1 4 oz TPH 1 40 ml VOA Sulfate/pH 1 4 oz TOC 1 4 oz **OBSERVATIONS / NOTES:** MAP: Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page | of |

Project Site Nam Project No.: Surface Soi Subsurface Sediment Other: QA Sample	I Soil	e SWMU 23 603539	9		eation: 3350 /: KL, JF,	006-0002 3006 JG
GRAB SAMPLE DATA	Υ.					
Date: /6/フ/1入	Depti	n Interval	Color	Description (Sand, Silt, Clay, N	loisture, etc.)
Time: 1455		`	12011	P. 11-	hraciula	Silt Sand
Method: DPT	\mathcal{O}	-2	13RN/	111	graeiuja	1
Monitor Reading (ppm			gray			Clay
COMPOSITE SAMPL	E DATA:					
Date:	Time Depth	n Interval	Color	Description (Sand, Silt, Clay, N	loisture, etc.)
Method:						
Manitas Dandinas	-					
Monitor Readings						
(Range in ppm):			-			
SAMPLE COLLECTION	N INFORMATION:					
	Analysis		Container Requ	irements	Collected	Other
VOCs	*		3 40ml VOA			
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			
TPH	×		1 40 ml VOA			
Sulfate/pH			1 4 oz			
тос			1 4 oz			
OBSERVATIONS / NO	\			MAP:		
DESCRIPTIONS				MARKEN HILL		
	Shac					
2 Y	ushes					
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate ID No.:	.gg.agagagagagagagagagagaga		J.g		
MOMIGD	Supricate ID NO					

Page 1 of 1

Project Site Nam Project No.:	ie: <u> </u>	NSA Crane SWMU 23 112G03539		Sample ID No.: 235000060 Sample Location: 235006 Sampled By: KL, JF, JG	<u>08</u>
Surface Soi				C.O.C. No.:	_
Sediment Other:				Type of Sample: [] Low Concentration	
[] QA Sample	Туре:				
GRAB SAMPLE DATA					46000
Date: 10/7/12		Depth Interval	Color	Description (Sand, Silt, Clay, Moisture, etc.)	
Time: 1510			a /		
Method: PPT		(3-8	1/20/1	Silty Clay	
Monitor Reading (ppm			U greenish	/	
COMPOSITE SAMPL	T I				
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moisture, etc.)	
Method:					
Monitor Readings					
(Range in ppm):					
				<u> </u>	
SAMPLE COLLECTION	INFORMAT	TION:			
	Analysis		Container Requ	uirements Collected Other	
VOCs			3 40ml VOA 1 4oz		
		· · · · · · · · · · · · · · · · · · ·	1 407		
Metals					
Metals PAHs			1 40z 1 40z 1 4 oz		
Metals PAHs PCBs TPH			1 4oz		
Metals PAHs PCBs TPH Sulfate/pH			1 4oz 1 4 oz		
Metals PAHs PCBs TPH Sulfate/pH			1 4oz 1 4 oz 1 40 ml VOA		
Metals PAHs PCBs			1 4oz 1 4 oz 1 40 mi VOA 1 4 oz		
Metals PAHs PCBs TPH Sulfate/pH			1 4oz 1 4 oz 1 40 mi VOA 1 4 oz		
Metals PAHs PCBs TPH Sulfate/pH			1 4oz 1 4 oz 1 40 mi VOA 1 4 oz		
Metals PAHs PCBs TPH Sulfate/pH			1 4oz 1 4 oz 1 40 mi VOA 1 4 oz		
Metals PAHs PCBs TPH Sulfate/pH TOC)TES:		1 4oz 1 4 oz 1 40 mi VOA 1 4 oz	MAPS	
Metals PAHs PCBs TPH Sulfate/pH TOC			1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAP	
Metals PAHs PCBs TPH Sulfate/pH TOC		10dor	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAP	
Metals PAHs PCBs TPH Sulfate/pH TOC		10der	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAR	
Metals PAHs PCBs TPH Sulfate/pH TOC		10der	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	WAR	
Metals PAHs PCBs TPH Sulfate/pH TOC		10der	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAP	
Metals PAHs PCBs TPH Sulfate/pH TOC		10dor	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAR	
Metals PAHs PCBs TPH Sulfate/pH TOC		10de/	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAP	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / NO		10dor	1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz		
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / NO	s Re		1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz	MAP: Signature(s):	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / NO			1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 1 4 oz		

Page | of |

Project Site Nam Project No.:	e: <u>N</u>	SA Crane SWMU 23 112G03539	(4)	Sample ID Sample Lo Sampled B	cation: 239	SB 007-0002
[x] Surface So [] Subsurface [] Sediment [] Other:	Soil 			C.O.C. No. Type of Sa [] Low Co	mple:	F, JG
[] QA Sample				_. Ц High Ci	oncentration 	
GRAB SAMPLE DATA Date: /o / /		Depth Interval	Color	Dogosintios	(Sand Silt Clay	Moieture etc.
Date: 11/01/13 Time: 1015	'	Depth interval	/			, Moisture, etc.)
Method:Hand Auger		0-2	13en/BIK	5:ity	Clayey	Sand
Monitor Reading (ppm	NA		DIX	,		
COMPOSITE SAMPLI						
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay	/, Moisture, etc.)
Method:						
Monitor Readings						
(Range in ppm):						
:						
:						
SAMPLE COLLECTIO	N INFORMATI	ON				
háitiúileástahássástább	Analysis	0446888888888888888	Container Requ	jirements	Collected	Other
VOCs	7 and 19010		3 40ml VOA		×	Callot
Metals			1 4oz	5	Χ.	
PAHs			1 4oz	Ja/	X	
PCBs			1 4 oz		4	
TPH			1 40 ml VOA 🥢) w (X	
Sulfate/pH			1 4 oz	<u> </u>	У	
700			4407		هر	
			- 1			
ODSEDVATIONS (NO	steath ann an a			MAP:		
OBSERVATIONS / NO	71 69311			MATSHILL		
Refusal at . 🕺	,					
,						
Circle if Applicable:				Signature(s):		
	Dunilente 'D) , _	-
MS/MSD	Duplicate ID	NO.:		01	2-8	1
1	1				·	//

Page 1 of 1

Project Site Nam Project No.:	e: <u>r</u>	NSA Crane SWMU 23 112G03539		Sample ID No.: 23SS 008-0002 Sample Location: 23SB 008 Sampled By: KL, JF, JG		
[x] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample	Soil			C.O.C. No Type of Sa [] Low Co		
GRAB SAMPLE DATA						
Date: 11/01/12		Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture. etc.)
Time: (230					(54)	
Method:Hand Auger		0-2	PE BEN	Sandy	Clay	
Monitor Reading (ppm			DEN	- /		
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings						
(Range in ppm):				 		
(Nango III ppii.).						
ļ	 			1		
	 			 		
SAMPLE COLLECTION	STATE OF THE REAL PROPERTY.					
SAMPLE CULLECTA						
VOCs	Analysis		Container Req 3 40ml VOA	uirements	Collected	Other
Metals			1 4oz	10	Ž	<u> </u>
PAHs			1 40Z	1361	Ž	
PCBs			1 4 oz	- 1	ζ.	
TPH			1 40 ml VOA	5m1	2	
Sulfate/pH			1 4 oz	7	×	1
TOC			4402		× ×	
100					-	1
		·	1		1	
			1			
			1			
OBSERVATIONS / NO	OTES:			MAP:		
Refusal at • 8 .	Hand	to move	Rocks			ļ
to get a	ccess t	to soil				,
				1		
				1		
				1		
				1		· · · · · · · · · · · · · · · · · · ·
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:		1 01	L-21	
	ŀ			/	7	

Page | of |

Project Site Nam Project No.:	e: <u>j</u>	NSA Crane SWMU 23 112G03539		Sample ID Sample Log Sampled B	ocation: 23SB 009	
[x] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample	Soil			C.O.C. No. Type of Sa [] Low Co		
GRAB SAMPLE DATA						
Date: ((/oɪ/12		Depth Interval	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
Time: 1300		0-2	Li		Sandy	
Method:Hand Auger			BEN	Silty		
Monitor Reading (ppm			38.0			*4*4*4********************
COMPOSITE SAMPL	F					
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
Method:						
Monitor Peadings	 			 		
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION	ON INFORMA Analysis	TION:	Container Req	uirements	Collected	Other
VOCs			3 40ml VOA		×	
Metals			1 4oz 🔪	15	- K	
PAHs			1 4oz	() 6/	X	
PCBs			1 4 oz	*	<u> </u>	ļ
TPH			1 40 ml VOA) n(Κ	
Sulfate/pH			1 4 oz	•	<u> </u>	
T0C			4-4-02		«	
OBSERVATIONS / NO	OTES:			MAP:		
Refusal at 1.2 Holadur	1. C	ecation in the edge of	near			
Co+.	·	·	-			
96						
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate 1	D No.:		UK	-50	

Page | of |

Project Site Name: NSA Crane SWMU 23 Project No.: 112G03539			Sample ID Sample Loc	cation: 23SB			
[x] Surface So				Sampled B C.O.C. No.			
<pre>[] Sediment [] Other:</pre>				Type of Sa	mpie: incentration		
[] QA Sample Type:				[] High Concentration			
GRAB SAMPLE DATA							
Date: 1(/01/12		Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	isture. etc.)	
Time: 1330		BRN					
Method:Hand Auger		0-2	D	filty sand			
Monitor Reading (ppm	NA						
COMPOSITE SAMPLI	E DATA:						
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moisture, etc.)			
Method:				:	_		
Monitor Readings							
(Range in ppm):							
(ixalige in ppili).							
			1				
SAMPLE COLLECTION		TION:					
	Analysis		Cantainas Dani	.:	A - 114 - 4	Other	
	Allalysis		Container Requ	Hrements	Collected	Other	
VOCs	Allalysis		3 40ml VOA	irements	×	Other	
Metals	Altalysis		3 40ml VOA 1 4oz	٢.	×	Other	
Metals PAHs	Allalysis		3 40ml VOA 1 4oz 1 4oz	Jar	k K	Other	
Metals PAHs PCBs	Alidiyələ		3 40ml VOA 1 4oz 1 4oz 1 4 oz	Sar	×	Other	
Metals PAHs PCBs TPH	Allalysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA	٢.	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH	Allalysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH	Allalysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH	Alialysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH	Alialysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH	Allalysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH	Allalysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / No	OTES:	ocation i	3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 4 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / N	OTES:	ocation i	3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 4 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / No	OTES:	ocasion i	3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 4 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / No	OTES:	ocarion i	3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 4 4 oz	Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / No Refusal at (OTES:	ocasion i	3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 4 4 oz	Sar Sar	k K	Other	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / No	OTES:		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz 4 4 oz	Signature(s):	k K	Other	

Project Site Name: NSA Crane SWMU 23 Sample ID No.: Project No.: Sample Location: 112G03539 Sampled By: KL, JF, JG C.O.C. No.: [x] Surface Soil [] Subsurface Soil Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment Type of Sample: [] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: 11/01/12 Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Interval Color Time: LT silty Sand Method:Hand Auger 0-2 Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other VOCs 3 40ml VOA × X Metals 1 4oz ' 1 4oz PAHs PCBs 1 4 oz TPH 1 40 ml VOA Sulfate/pH 1 4 oz × 4-4-oz 100- **OBSERVATIONS / NOTES:** MAP: Refusal at Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page of Project Site Name: NSA Crane SWMU 23 Sample ID No.: 23SS 0 2 -0002 Project No.: Sample Location: 23SB 012 112G03539 Sampled By: KL, JF, JG [x] Surface Soil C.O.C. No.: [] Subsurface Soil Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment Type of Sample: [] Low Concentration [] Other: [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: 11/01/12 Date: Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) 1430 Time: BRN silty Sand Method:Hand Auger 0-2 Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis** Container Requirements Collected Other VOCs 3 40ml VOA × X Metals 1 4oz 1 PAHs 1 4oz 1 4 oz PCBs TPH 1 40 ml VOA Sulfate/pH 1 4 oz 440z TOC OBSERVATIONS / NOTES: MAP: Refusal at Signature(s): Circle if Applicable: ture(s). **Duplicate ID No.:** MS/MSD

Page 1 of 1

Project Site Nam Project No.: [x] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample	oil Soil	NSA Crane SWMU 23 112G03539		Sample ID No.: Sample Locatio Sampled By: C.O.C. No.: Type of Sample [] Low Conce	KL, JF, JG KL are the second	13-0002
GRAB SAMPLE DATA						
Date: 11/01/12		Depth Interval	Color	Description (Sand	d, Silt, Clay, Mois	sture, etc.)
Time: /500						
Method:Hand Auger		0-2	LIBEN	silty sm	sand	
Monitor Reading (ppm	NA		ISKN	• • • • • • • • • • • • • • • • • • • •		
COMPOSITE SAMPLI	E DATA:					
Date:	Time	Depth Interval	Color	Description (San	d, Silt, Clay, Mois	sture, etc.)
Method:						
Monitor Readings						
(Range in ppm):						
SAMPLE COLLECTION	ON INFORMA	VTION:				
báladáladalkábánabásíbbb	Analysis		Container Requ	irements	Collected	Other
V00-	raidiyolo		3 40ml VOA		×	Otho:
IVUUS						+
			1 4oz 🦴 🕴		X	
Metals			1 4oz	Sac		1
VOCs Metals PAHs PCBs			1 4oz	500	X	
Metals PAHs PCBs				0.00		
Metals PAHs PCBs TPH			1 4oz 1 4 oz 1 40 ml VOA	Jar	χ ,	
Metals PAHs PCBs TPH Sulfate/pH			1 4oz	0.00	χ	
Metals PAHs PCBs TPH Sulfate/pH			1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	0.00	χ ,	
Metals PAHs PCBs TPH Sulfate/pH			1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	0.00	χ	
Metals PAHs PCBs TPH Sulfate/pH			1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	0.00	χ	
Metals PAHs PCBs TPH Sulfate/pH			1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	0.00	χ	
Metals PAHs PCBs TPH Sulfate/pH			1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	Jn/	χ	
Metals PAHs PCBs TPH Sulfate/pH	DTES:		1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	0.00	χ	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / NO	PIES:		1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	Jn/	χ	
Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / NO			1 4 oz 1 4 oz 1 40 ml VOA 1 4 oz	MAP: Signature(s):	χ	

Page 1 of 1

Project Site Name: NSA Crane SWMU 23 Project No.: 112G03539			Sample ID Sample Lo Sampled B	cation: 23SB 👩			
[x] Surface Soil [] Subsurface Soil [] Sediment				C.O.C. No.	:		
Other: QA Sample	Туре:			[] Low Co	oncentration oncentration		
GRAB SAMPLE DATA							
		Depth Interval	Depth Interval Color Description (Sand, Silt,				
Time: (615						,	
Method:Hand Auger		0-2	BRW	Silty Sand			
Monitor Reading (ppm	NA						
COMPOSITE SAMPLE	DATA:						
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moisture, etc.)			
Method:							
Monitor Readings					- 1		
(Range in ppm):							
:	- -						
SAMPLE COLLECTIO	N INFORMA	TION:					
	Analysis		Container Requ	uirements	Collected	Other	
VOCs	<u>.</u>		3 40ml VOA		×		
Metals			1 4oz		Κ		
PAHs			1 40z	761	X		
PCBs			1 4 oz	1	<u> </u>		
TPH			1 40 ml VOA) in (
Sulfate/pH			14 oz		<u> </u>		
700			4402		<u> </u>		
		<u></u>					
<u> </u>							
OBSERVATIONS / NO)TES:			MAP:			
<i>,</i>	1						
Refusal at .5	loca	ation on l area. Thin Bedrock.	hillside				
near p	ionic .	aren. Thin	\ Vanet				
0+5011	OT	BESTOUR.				:	
Circle if Applicable:				Signature(s);			

Page | of | Project Site Name: NSA Crane SWMU 23 Sample ID No.: Project No.: 112G03539 Sample Location: Sampled By: KL, JF, JG [x] Surface Soil C.O.C. No.: [] Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Color Date: 10(3(((2 **Depth Interval** Description (Sand, Silt, Clay, Moisture, etc.) Time: silty Sand Method:Hand Auger 0-2 BRN Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other VOCs 3 40ml VOA く Metals 1 4oz 1 1 4oz **PAHs** PCBs 1 4 oz TPH 1 40 ml VOA Sulfate/pH 1 4 oz × 4-4-oz 100~ OBSERVATIONS / NOTES: MAP: Refusal at Circle if Applicable: Signature(s): ature(s): MS/MSD **Duplicate ID No.:**

Page | of |

Project Site Nam Project No.:	e: <u>!</u>	NSA Crane SWMU 23 112G03539		Sample ID Sample Loc Sampled B	cation: 23SB	6
[x] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample	Soil			C.O.C. No. Type of Sa [] Low Co		
GRAB SAMPLE DATA	V.					
Date: [0[31]]	2	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Time: / (430			DE			- 1
Method:Hand Auger		0-2	BRN	Sand		
Monitor Reading (ppm				<u> </u>		
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION	N INFORMA	TION:				
	Analysis		Container Requ	uirements	Collected	Other
VOCs			3 40ml VOA		X	
Metals			1 4oz	561	Κ.	ļ
PAHs			1 4oz		X	1
PCBs			1 4 oz	1	Κ	
TPH			1 40 ml VOA)n/		
Sulfate/pH			1 4 oz	•	<u> </u>	
700	<u></u>		4402		٧	
OBSERVATIONS / N	OTES:			MAP:		
Refusal at . 3 '		vilet Ca ar Cocad	sing Hon.	Signature(s):		
MS/MSD	Duplicate I	D No.:		R	- 3	

Page | of | Project Site Name: NSA Crane SWMU 23 Sample ID No.: Project No.: Sample Location: 112G03539 Sampled By: KL, JF, JG C.O.C. No.: [x] Surface Soil [] Subsurface Soil [] Sediment Type of Sample: [] Low Concentration Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Date: Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Time: பி Silty Sand Method:Hand Auger 0-2 BRN Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Date: Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other VOCs 3 40ml VOA X X Metals 1 4oz ' 1 4oz PAHs **PCBs** 1 4 oz TPH 1 40 ml VOA Sulfate/pH 1 4 oz × 4 4 oz TOC -OBSERVATIONS / NOTES: MAP: Refusal at Circle if Applicable: Signature(s): K-37 MS/MSD **Duplicate ID No.:**

Page | of | Project Site Name: NSA Crane SWMU 23 Sample ID No.: Project No.: 112G03539 Sample Location: 23SB 01 Sampled By: KL, JF, JG C.O.C. No.: [x] Surface Soil [] Subsurface Soil Sediment Type of Sample: [] Low Concentration [] Other: [] QA Sample Type: ∏ High Concentration GRAB SAMPLE DATA: Date: 4/01/12 Description (Sand, Silt, Clay, Moisture, etc.) Depth Interval Color Time: DK Method:Hand Auger 0-2 BRN Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other VOCs 3 40mi VOA X X Metals 1 4oz ' X PAHs 1 4oz 1 4 oz PCBs 1 40 ml VOA TPH Sulfate/pH 1 4 oz 44 oz 100 - OBSERVATIONS / NOTES: MAP: Refusal at \. L Circle if Applicable: Signature(s): DK-8p **Duplicate ID No.:** MS/MSD

MS/MSD

Duplicate ID No.:

SOIL & SEDIMENT SAMPLE LOG SHEET

Page of Project Site Name: Sample ID No.: NSA Crane SWMU 23 Project No.: Sample Location: 23SB 0/ 112G03539 Sampled By: KL, JF, JG [x] Surface Soil C.O.C. No.: □ Subsurface Soil Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: 11/01/12 Date: Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Time: Gilty Clay LT Method:Hand Auger 0-2 BRN Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: **Depth Interval** Date: Time Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected Other **Analysis** VOCs 3 40ml VOA X Metals 1 4oz **PAHs** 1 4oz 1 4 oz **PCBs** TPH 1 40 ml VOA Sulfate/pH 1 4 oz 440Z 100- **OBSERVATIONS / NOTES:** MAP: Refusal at 2.01 Signature(s): Circle if Applicable:

Page_l_of_l_

Project Site Nam Project No.:	e: <u>.</u>	NSA Crane SWMU 23 112G03539		Sample ID N	ation: 23SB 0	
[x] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample	Soil			Sampled By: C.O.C. No.: Type of Sam [] Low Con [] High Cor	ple: centration	
GRAB SAMPLE DATA						
Date: 11/01/12		Depth Interval	Color	Description (S	and, Silt, Clay, Moi	sture, etc.)
Time: 1(30			2011	1141	6.1	
Method:Hand Auger		0-2	BEN	Silty	unc	
Monitor Reading (ppm					*************************************	******************************
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (S	and, Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings						
(Range in ppm):						
			-			
SAMPLE COLLECTION	N INFORMA	TONE				
be Bould be all the day be and he	Analysis	44 6 4 2 6 10 10 10 10 10 10 10 10 10 10 10 10 10	Container Req	uiromente	Collected	Other
VOCs	Allalysis		3 40ml VOA	unements	*	Other
Metals			1 4oz 🔪	15	 	1
PAHs			1 4oz	1361	X	
PCBs			14 oz	.1	ζ.	
TPH			1 40 ml VOA) Ju	<i>X</i>	
Sulfate/pH			1 4 oz		×	
70C			4402		×	
		·				
					·	+
OBSERVATIONS / NO	OTES:			MAP:		
bdebdeskinkladidedddkiet						
Refusal at . (1					
Refusal at 1. Q				1		
				ŀ		
			 			
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate I	D No.:			- 2-1	7
					5//	

Page _ of _ (Project Site Name: Sample ID No.: NSA Crane SWMU 23 23SS / Project No.: 112G03539 Sample Location: 23SB Sampled By: KL, JF, JG [x] Surface Soil C.O.C. No.: [] Subsurface Soil Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment Type of Sample: [] Low Concentration [] Other: [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: 11/01/12 Date: Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Time: Silty Sand BEN Method:Hand Auger 0-2 Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other VOCs 3 40ml VOA × Z Metals 1 4oz PAHs 1 4oz PCBs 1 4 oz 1 40 ml VOA TPH Sulfate/pH 1 4 oz 440z -100 **OBSERVATIONS / NOTES:** MAP: Refusal at 2. (Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page_| of |

Project Site Nam Project No.:	e:	NSA Crane SWMU 23 112G03539		Sample ID I Sample Loo Sampled By	cation: 23SB	B2-0002
[x] Surface So [] Subsurface				C.O.C. No.:		
[] Sediment[] Other:[] QA Sample	Туре:				mple: ncentration oncentration	
GRAB SAMPLE DATA						
Date: 11/01/12		Depth Interval	Color	Description (Sand, Silt, Clay, Moi	sture. etc.)
Time: 1530						
Method:Hand Auger		0-2	BRN	Silty	sand	İ
Monitor Reading (ppm	NA					1
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings						
(Range in ppm):						
(, ,,,g = pp).	-					
			ļ			
SAMPLE COLLECTION						
SMALLE COLLECTIV	, ., ., ., ., ., ., ., ., ., ., ., ., .,					
VOCs	Analysis		Container Requ 3 40ml VOA	irements	Collected	Other
Metals			<u> </u>	_	~~~~	
PAHs			1 4oz	Sar	$\frac{1}{\lambda}$	
PCBs			1 4 oz		~	
TPH			1 40 ml VOA	Sal		
Sulfate/pH			1 4 oz	780.	X	
700			44oz		<u> </u>	+
100	·				<u>a</u>	1
				44		
					······································	
OBSERVATIONS / N	OTES:			MAP:		
Refusal at						
riorada, at						
				1		
				1		
Circle if Applicable:				Signature(s):		
		4.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
MS/MSD	Duplicate	ID No.:			-59	

Page of Project Site Name: NSA Crane SWMU 23 Sample ID No.: Project No.: Sample Location: 23SB// 112G03539 Sampled By: KL, JF, JG [x] Surface Soil C.O.C. No.: [] Subsurface Soil Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment
 Sediment Type of Sample: [] Low Concentration [] Other: [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: Date: (1/01/12 **Depth Interval** Color Description (Sand, Silt, Clay, Moisture, etc.) Time: Silty Sand Method:Hand Auger 0-2 BRN Monitor Reading (ppm NA COMPOSITE SAMPLE DATA: Date: Time Depth Interval Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other VOCs 3 40ml VOA x X Metals 1 4oz 1 PAHs 1 4oz PCBs 1 4 oz TPH 1 40 ml VOA Sulfate/pH 1 4 oz × 4-4-oz. 100~ OBSERVATIONS / NOTES: MAP: Refusal at 2.0 Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page / of /

Project Site Nam Project No.: [] Surface Soil Subsurface [] Sediment [] Other: [] QA Sample	l Soil Type:	NSA Crane SWMU 23 112G03539		Sample ID N Sample Loca Sampled By C.O.C. No.: Type of Sam [] Low Con [] High Con	: KL, JF,	B 0240406 B 0240 JG
GRAB SAMPLE DATA						
Date: 1017/12		Depth Interval	Color	Description (S	and, Silt, Clay, N	loisture, etc.)
Time: 1550		\	im a	6'11.	61	
Method: DPT		4-6	BRN	> ITY	Clay	e.
Monitor Reading (ppm				575557555555555555555444545454545454		
COMPOSITE SAMPLI						
Date:	Time	Depth Interval	Color	Description (S	Sand, Silt, Clay, N	loisture, etc.)
Method:	06					
Monitor Readings			-			
-						
(Range in ppm):						
SAMPLE COLLECTIO	N INFORMA	TION:				
	Analysis		Container Requ	rirements	Collected	Other
VOCs			3 40ml VOA			
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
TOC			1 4 oz			
					ng ngaga gagagaga ang ngagasan ng ng ng ng ng ng	
OBSERVATIONS / NO				MAP:		
g row e	1 0-	4 Nosc	schaa Sampu			
Circle if Applicable:				Signature(s):		
				Signature(S):		
MS/MSD	Duplicate II	U NO.:				

Page / of /

Project Site Nam Project No.:	ie:	NSA Crane SWMU 23 112G03539		Sample ID I Sample Loc Sampled By	No.: 235130 eation: 235130 /: KL, JF, JG	0240608 024
[] Surface Soi ⊈Subsurface				C.O.C. No.:		
[] Sediment				Type of San		
[] Other: [] QA Sample	Type			. [] Low Coi	ncentration encentration	
L WY Cample	Type.			. II riigii Oo	TICETHIALION	
GRAB SAMPLE DATA	4					
Date: (0/7/1	λ	Depth Interval	Color	Description (Sand, Silt, Clay, Moi	sture, etc.)
Time: /600						-
Method: DPT		(0-8	BRN	Silt	y clay	•
Monitor Reading (ppm		0 0				
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moi	sture, etc.)
Method:	_					
Monitor Readings						
(Range in ppm):			_ <u>_</u>			
SAMPLE COLLECTIO	N INFORMA	TION				
	Analysis		Container Requ	irements	Collected	Other
VOCs	, , , , ,		3 40ml VOA			
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
100-			-14oz			
		<u>_</u> _				
OBSERVATIONS / NO	OTES.			MAP:		
			-			
			9			
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate I	D No.:		1 クレ		<u>, </u>
				VE)	
			<u>-</u>	L		

Page | of |

Project Site Nam Project No.:	e:	NSA Crane SWMU 23 112G03539		Sample ID No.	on: <u>23580</u>	
[] Surface Soi [] Subsurface [] Sediment				Sampled By: C.O.C. No.: Type of Sampl	KL, JF, JG	
[] Other:				[] Low Conce	entration	
[] QA Sample	Type:	-		High Conc	entration	
GRAB SAMPLE DATA						
Date: 10[7]12		Depth Interval	Color	Description (San	d, Silt, Clay, Mois	sture, etc.)
Time: 1540		ha i	130.1		<i>(</i> ;	
Method: \mathcal{QPI} Monitor Reading (ppm	NΔ	4-6	BRN	silty	Clay	
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (San	ıd, Silt, Clay, Mois	sessessessessessessessessessessessesses
Date.	Time	Deptil litter vai	00101	Description (San	id, Sift, Clay, Mois	sture, etc.)
Method:						
Monitor Readings						
(Range in ppm):	· · · · · · · · ·		**-		· · · · · · · · · · · · · · · · · · ·	
(reange in ppin).		, , , , , , , , , , , , , , , , , , ,				
					<u> </u>	
SAMPLE COLLECTION	N INEODIA					
	Analysis		Container Requ	uromente	Collected	Other
VOCs	Allalysis		3 40ml VOA	mements	Collected	Other
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
тос			1 4 oz			
						_
OBSERVATIONS / NO	TES:			MAP:		
0 4	650.4	11- Nosu 5	Come			
0 3 1	11,000	(1) 1050	+uce			
	•	\supset	oil sample			
58						
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:				
	-					

Page__l_of__l_

Project Site Nam Project No.:		NSA Crane SWMU 23 112G03539		Sample ID No.: 235/30250608 Sample Location: Sampled By: KL, JF, JG		
Surface SoiSubsurfaceSedimentOther:QA Sample	Soil			C.O.C. No.: Type of Sample: Low Concen High Concer	tration	
GRAB SAMPLE DATA						
Date: 0/7		Depth Interval	Color	Description (Sand,	Silt, Clay, Mois	sture, etc.)
Time: 1545	-	6 11	DOW	city cl	= 1/	
Method: DPT	NIA	6-8	BEN	silty ch	'y	
Monitor Reading (ppm COMPOSITE SAMPLI						
Date:	Time	Depth Interval	Color	Description (Sand,	Silt, Clay, Mois	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION		TION				
VOCs	Analysis		Container Requ 3 40ml VOA	uirements (Collected	Other
	Analysis			uirements (Collected	Other
VOCs	Analysis		3 40ml VOA	uirements (Collected	Other
VOCs Metals PAHs PCBs	Analysis		3 40ml VOA 1 4oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH	Analysis		3 40ml VOA 1 4oz 1 4oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH	Analysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH	Analysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH	Analysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH	Analysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH	Analysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH	Analysis		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	uirements (Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	MAP:	Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC			3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	MAP	Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC OBSERVATIONS / NO	DTES:		3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz		Collected	Other
VOCs Metals PAHs PCBs TPH Sulfate/pH TOC		D No.:	3 40ml VOA 1 4oz 1 4oz 1 4 oz 1 40 ml VOA 1 4 oz	MAP	Collected	Other

Page 1 of

Project Site Nam Project No.:	ie:	NSA Crane SWMU 23 112G03539		Sample ID No.: 33580240406 Sample Location: 3358026 Sampled By: KL, JF, JG		
[] Surface Soi			90	C.O.C. No.: Type of Sample	ple:	
[] Other: [] QA Sample	Type:			. [] Low Cond [] High Con		
GRAB SAMPLE DATA						
Date: 10/7/\2		Depth Interval	Color	Description (Sa	and, Silt, Clay, Moi	sture. etc.)
Time: 1036		4 (, ,
Method: シアイ		4-10	BRN	silty	Clay	
Monitor Reading (ppm				<u> </u>	/	
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (Sa	and, Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings						
(Range in ppm):						
		<u> </u>				
SAMPLE COLLECTION	NI INICOPIAN					
SAMELE COLLECTION	Analysis		Container Requ	uremente	Collected	Other
VOCs	Allalysis		3 40ml VOA	mements	Collected	Other
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
TOC	·		1 4 oz			
						
OBSERVATIONS / NO	TES:			MAP:		
Shond	tvel	0 dur 4-	U			
gravel	0-4!	odur 4-1 No surfac	e Sample			
Col	lectec	1				
	- •					
				<u> </u>		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:				

Page 1 of 1

Project Site Nam Project No.:	ie:	NSA Crane SWMU 23 112G03539		Sample ID N Sample Loca Sampled By:	lo.: <u>33580</u> ation: <u>3358</u> KL, JF, JG	0360608
[]Surface So ∰Subsurface				C.O.C. No.:	KL, JF, JG	·
[] Sediment	CON			Type of Sam	ple:	
[] Other:				[] Low Con	centration	
[] QA Sample	Туре:			[] High Cor	ncentration	
GRAB SAMPLE DAT	A ::::::::::::::::::::::::::::::::::::					
Date: 10/7/12		Depth Interval	Color	Description (S	and, Silt, Clay, Moi	sture, etc.)
Time: 1035		10	Day		C i	
Method: ワアブ		6-8	BRN	1 2114	Clay	
Monitor Reading (ppm COMPOSITE SAMPL						
		<u> </u>				
Date:	Time	Depth Interval	Color	Description (S	and, Silt, Clay, Moi	sture, etc.)
Method:						
						-
Monitor Readings						
(Range in ppm):						
SAMPLE COLLECTION	ON INFORMA	TION:				
	Analysis		Container Requ	uirements	Collected	Other
VOCs			3 40ml VOA			
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			ļ
TPH			1 40 ml VOA			
Sulfate/pH TOC			1 4 oz			
100			1 4 oz			
	797		<u> </u>	(6)		<u> </u>
· _		-		-		
		-	-			
OBSERVATIONS / NO	OTES:			MAP		
clas x	P. A.	oil ant	(-8 ¹			
Stigni	TUEL	odor at	0 0			
,						
				İ		
Circle if Applicable				Signature(s):		
MS/MSD	Duplicate II	D No :		1		
	piivate II	10				

Page<u>l</u> of <u>l</u>

Project Site Nam Project No.: [] Surface Soi [] Subsurface [] Sediment [] Other: [] QA Sample	l Soil	NSA Crane SWMU 23 112G03539		Sample ID N Sample Loc Sampled By C.O.C. No.: Type of San [] Low Cor	ration: 23000 KL, JF, JG	1-0006
GRAB SAMPLE DATA	AS IN THE RESERVE OF THE RESERVE OF THE RESERVE OF THE RESERVE OF THE RESERVE OF THE RESERVE OF THE RESERVE OF					
Date: 0 8 1		Depth Interval	Color	Description (Sand, Silt, Clay, Mois	sture, etc.)
Time: 6400 Method: Plastic Monitor Reading (ppm	franc (0-61	BEN		some silt	
COMPOSITE SAMPL						
Date:	Time	Depth Interval	Color	Description (S	Sand, Silt, Clay, Mois	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION	N INFORMA	TION:				
	Analysis		Container Requ	irements	Collected	Other
VOCs			3 40ml VOA			
Metals PAHs			1 4oz 1 4oz			
PCBs			1 4 oz			
TPH_			1.40 ml VOA			
Sulfate/pH			- 1 4 oz			
TOC			1 4 oz			
OBSERVATIONS / NO)TES:			MAP:		
Circle (Annile and a				Signature(e)	9	
Circle if Applicable:	Duplierate II	PD 100812	1-04	Signature(s):	5	7

NSA Crane SWMU 23 112G03539

Project Site Name: Project No.:

SOIL & SEDIMENT SAMPLE LOG SHEET

Page | of | 2350002-0006 2350003 KL, JF, JG Sample ID No.: Sample Location: Sampled By: C.O.C. No.:

[] Surface So [] Subsurface				C.O.C. No.:		
[] Sediment [] Other: [] QA Sample	е Туре:			Type of San _	ncentration	
GRAB SAMPLE DAT	A					
Date: (0/8/1	J	Depth Interval	Color	Description (S	Sand, Silt, Clay, Mo	isture, etc.)
Time: 1050		6 (11	2001	m (,)	The Orlinois	- 12
Method: Plash	c trowel	0-61	13EN	Silty	sand	
Monitor Reading (ppm				1		
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (S	Sand, Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings			-			
(Range in ppm):						
			-			
SAMPLE COLLECTION	NINFORMA	TION:				
	Analysis		Container Req	uirements	Collected	Other
VOCs	•		3 40ml VOA			
Metals		1000	1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz	,		
TPH >			1 40 mi VOA			
Sulfate/pH			- 1 4 0z			
TOC			1 4 oz	1		
		,				
OBSERVATIONS / N	OTES:			MAP:		
				5		
				± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	٠	
Circle if Applicable:				Signature(s):	7, 1	
MS/MSD	Duplicate II	D No.:		01		P
es sa Maria		7)				

Project Site Nam Project No.: [] Surface Soi [] Subsurface [] Sediment [] Other: [] QA Sample	l Soil	NSA Crane SWMU 23 112G03539	ž	Sample ID No Sample Loca Sampled By: C.O.C. No.: Type of Sample Low Concern L	centration	203-000b
GRAB SAMPLE DATA						
Date: 10/8		Depth Interval	Color	Description (Sa	and, Silt, Clay, Mois	sture, etc.)
Monitor Reading (ppm	trawle NA	0-611	BEN	sitty	Saud	
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description (Sa	and, Silt, Clay, Mois	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION		TION:				
\ <u></u>	Analysis		Container Requ	irements	Collected	Other
VOCs Metals			3 40ml VOA			
PAHs			1 4oz 1 4oz			127
PCBs			1 4 oz	 		
TPH			_140 ml VOA			
Sulfate/pH			- 1 4 OZ			
TOC			1 4 oz			
OBSERVATIONS / NO				PPPT-SARAHARIANANAN		
DBSERVATIONS I NU	ALES:			MAP:		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:		1/	-5	>

Page_1_ of _1_

Project No.: [] Surface Soil [] Subsurface Soil [] Sediment [] Other: [] QA Sample Type:		NSA Crane SWMU 23 112G03539			By: KL, JF, JG	04-0006
GRAB SAMPLE DATA	************					
Date: [0 8]	9	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Time: (345 Method: Plastic: Monitor Reading (ppm	NA	0-611	BRN	Silty	Sand	
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION	N INFORMA Analysis	TIONS	Container Requ	urements.	Collected	Other
VOCs	Allalysis		3 40ml VOA	inements	Collected	Other
Metals			1 4oz			
PAHs		-	1 4oz			
PCBs			1 4 oz			
TPH			1 40 ml VOA			
Sulfate/pH			14 oz			
тос			1 4 oz			
		·				1
						1
OBSERVATIONS / NO	OTES:			MAP:		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate I	D No.:		UZ	-87	

Page of L

Project Site Nam Project No.:	ne:	NSA Crane SWMU 23 112G03539		Sample Location: 235 Doos - cools			
[] Surface Soi [] Subsurface				Sampled By: C.O.C. No.:	KL, JF, JG		
Sediment				Type of Sample:			
1 Other:				[] Low Concentr			
[] QA Sample	Type:			High Concent	ration		
GRAB SAMPLE DAT							
Date: 10/8/1		Depth Interval	Color	Description (Sand, S	Silt. Clay. Moi	sture. etc.)	
Time: 1330							
	torel	0-6"	BRN	Silty	Sand	,	
Monitor Reading (ppm	NA				<i></i>		
COMPOSITE SAMPL	E DATA:						
Date:	Time	Depth Interval	Color	Description (Sand,	Silt, Clay, Moi	sture, etc.)	
Method:	·	,					
Monitor Readings							
(Range in ppm):							
SAMPLE COLLECTION							
VOCs	Analysis		Container Requ	uirements Co	ollected	Other	
Metals			3 40ml VOA 1 4oz			 	
PAHs			1 40z			 	
PCBs	*-		1 4 oz				
TPH			1 40 ml VOA	_			
Sulfate/pH			140z				
TOC			1 4 oz				
-							
OBSERVATIONS / NO	3766988888			MAP:	ticisko dicircio di dicircio		
DOSERVANDRSANI							
				ļ.			
Circle if Applicable:				Signature(s):			
MS/MSD	Duplicate I	D No.:		N	(/		
				UK	1/2		
	<u> </u>				//		

Page____ of ____

Project Site Nam Project No.: [] Surface Soi [] Subsurface [] Sediment [] Other: [] QA Sample	il Soil	NSA Crane SWMU 23 112G03539		Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			
GRAB SAMPLE DATA	A						
Date: 10 8	12	Depth Interval	Color	Description (S	Sand, Silt, Clay, Moi	sture, etc.)	
101	tic travel	0-611	BRN		Sand		
COMPOSITE SAMPL							
Date:	T	Donath Intones		B			
Date:	Time	Depth Interval	Color	Description (Sand, Silt, Clay, Moi	sture, etc.)	
Method:							
Monitor Readings							
							
(Range in ppm):							
		· · · · · · · · · · · · · · · · · · ·					
SAMPLE COLLECTION	ON INFORMA	TION:					
	Analysis		Container Requ	irements	Collected	Other	
VOCs			3 40ml VOA				
Metals PAHs			1 4oz				
PCBs			1 4oz 1 4 oz				
TPH-			1 402				
Sulfate/pH			1407				
TOC			1 4 oz				
100			1 4 02				
		·					
						1	
OBSERVATIONS / NO	OTES			MAP:			
						·	
						8	
				1			
Circle if Applicable:				Signature(s):			
MS/MSD	Duplicate II	n No :			7 \ \		
	- Zupiivate II	10					
					/		

Page f of f

Project Site Nam Project No.: [] Surface Soi [] Subsurface	1	NSA Crane SWMU 23 112G03539		Sample ID Sample Lo Sampled E C.O.C. No	ocation: KL, JF, JG	
Sediment				Type of Sa		
	Other: QA Sample Type:				oncentration concentration	
					oncontration	
GRAB SAMPLE DATA						
	8/4	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Method: Bucket Monitor Reading (ppm		0-1'	May/Black	5/1+/	frel reside	IL
COMPOSITE SAMPL						
Date:	Time	Depth Interval	Color	Description	(Sand, Silt, Clay, Moi	sture, etc.)
Method:		20	Е.			
Monitor Readings						
(Range in ppm):						
SAMPLE COLLECTION	N INFORMA	TION				
	Analysis		Container Requ	irements	Collected	Other
VOCs			3 40ml VOA			
Metals			1 4oz			
PAHs			1 4oz			
PCBs			1 4 oz			
TPH			1 40 ml VOA			
Sulfate/pH			1 4 oz			
TOC			1 4 oz			
				<u></u>	- ·	
OBSERVATIONS / NO)IES:			MAP:		
Strong	fiel	odor for Seperator n end of	om			
Dilla	ater	Seperator	Xa min.			
put buch	ket o	n enc ot	1-11-6			
						(6)
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:		1		D

ATTACHMENT 4 SURFACE WATER SAMPLE LOG SHEET

Tetra Tech

	į.		· · · · · · · · · · · · · · · · · · ·				Page	of
Project Site Name: Project No.:	Ng(× <	<u> </u>	SWY		Location:	235u	
Stream Spring Pond Lake Other: QA Sample Type:		•	10		[] Low			Kamp
SAMPLING DATA:		F 150	t in the same	一种种种种	. #45 9 FL	S. S. Landing	18313.1	4. 2. m.
Date: 10 (3 1 12 Time: 0 0 0 5	Color Visual	pH Standard	s.c.	Temp. Degrees C	Turbidity NTU	DO mg/l	Salinity %	ORP mV
Depth: (e in chs Method: Office	Clear	5.38	,079	14.1	371	8.31	-	_
SAMPLE COLLECTION II	11 -	N: 37		-company		100	\$\$\$\$\$\frac{1}{2} \cdots	and the first of the
Analysis		Preser	vativa		Container R			Collected
pnHs		-	.63.			Am La		<u> </u>
metals Idis	\$	1+1	103		2 1-19	5+;		
	···				(16)			
		 						
							14	
		<u> </u>				150		
				· · · · · · · · · · · · · · · · · · ·		•		<u> </u>
							·	
		l			·			
							•	
OBSERVATIONS / NOTE:	S: ** ***	AND THE PARTY OF	では、	MAP:	都特別	7、旅游。	12.21 CE	Part Comment
	2			- 23			•	
	12			588				
								(**
						•		
				40				28
				_				5
Gircle if Applicable:		e e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	447575	Signatur	4s): (
						7/		
MS/MSD Duplicate ID N	n took					//	X.	

ATTACHMENT 4 SURFACE WATER SAMPLE LOG SHEET

Tt.	etra Tech
-----	-----------

Project Site Name: Project No.: Stream Spring Pond Lake Other: OA Sample Type:	1120	703	5.3°)))	Samples C.O.C. I Type of [] Low	Location: d By:	2350 235 Losse	2 of 1 2000 2000 2000 2000
SAMPLING DATA:		4.,111.6		·東洋野県市		ないない		1,750
Date: 10/8/12 Time: 1050	Color	pH Standard	S.C., mS/cm	Temp. Degrees C	Turbidity NTU	DO mg/i	Salinity %	ORP mV
Depth: Que 4 in		10.40 4000	,06x	14.2			 ~	
Method: Puri	Clevi	6.11	,003	17.0	(3.(7.60	1,000	-
SAMPLE COLLECTION IN	FORMATIC	N: 194	The bring of	一些教育的	The Party	新年数100 00	斯特特	والمراجع المعارض المعارض
Analysis		Preserv	rative		Container Re	quirements		Collected
				·				
DBSERVATIONS / NOTES	ran de de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition dell	Spir William (* \$)		MAP:	Series II vos		Production of the state of the	ile silesi nis
OBSERVATIONS/NOTES	****	-sel-trioge &		≱MAP :				And the second s
DESERVATIONS / NOTES	****	-sel-trioge s		ZMAP:	Signature	12		i Para de Para

ATTACHMENT 4 SURFACE WATER SAMPLE LOG SHEET

Tetra Te	ch
----------	----

	J							Page	e_/ of /
Stream Spring Pond Lake Other:	9	, A Cy 0	030	<u>539</u>	<u>~~3</u>	Sample C.O.C. I Type of [] Low	Location: d By:	235 w 235 w Losse	003
SAMPLING	DATA:	1/8	- tu it	i inga	· 度等的	· . # . 4 7 18	OLEMPAC.	SEXT. CO.	respect to
Date: 10		Color	pH	s.c.	Temp.	Turbidity	DO	Salinity	ORP
Time: \ /	10	Visual	Standard	١ ،	Degrees C	NTU	mg/l	%	mV
Depth: Method:		Clevi	5.98	,071	14.0	17.1	4 41	4	:
SAMPLE CO	DLLECTION INF	ORMATIO	N: 25		4. M. Mark	言語ははいい	和研究公外知识	期往时,	CERTIFICATION
	Analysis		Preserv	vative		Container Re	equirements		Collected
 			<u> </u>			· · · · · · · · · · · · · · · · · · ·			ļ -
									
			- 77		·		·		
			 						
	-1		 						
				1_				•	- 0
OBSERVAT	IONS / NOTES:	Train many	in the inge to	行政學語	MAP:	2007年代1893年	· · · · · · · · · · · · · · · · · · ·	marki ci	
		8						•	
		10							
				1					¥ .
				ļ					
					į				
				ļ					
				1					
					İ				
				-					
								•	
				-	ŀ				00 ©
Circle if App	licable:	9		5 A. 147	date of the	Signature	e(s):		
MS/MSD	Duplicate ID No.:	:				-	•		
1.0									

ATTACHMENT 4 SURFACE WATER SAMPLE LOG SHEET

	Tt	Tetra Tech	•
-	- 4		

				-			Pagr	e_\ of_\
Project Site Name: NS Project No.:	112G 112G	03.5	- Su 39	m, 9	Sample Sample Sample C.O.C.	Location: d By:	235u 235u 205	2004 2004 2004
[] Spring [] Pond [] Lake [] Other: [] QA Sample Type:					[] Low	Sample: Concentra Concentr		•
SAMPLING DATA:		' " P	东, 洪 横叶	一种一种社会	· Wed Fill	Children.	· 2000年1月1日 1	*
Date: (0(8(1a	Color	pH	s.c.	Temp.	Turbidity	DO	Selinity	ORP
Time: 1345 Depth:	Visual	Standard		Degrees C	NTU	mg/i	%	mV
Method:	- Cer	6.10	1,21	3.7	8.0			
SAMPLE COLLECTION IN	FORMATIO	N: 37	新山本山村の東	C. 12 10 10 10 10 10 10 10 10 10 10 10 10 10	1000年1000年	数据数据 的	DEPART.	and the feet of the second
Analysis		Preser	rvative		Container Re	quirement	8	Collected
		 						
		-		 				+
		 		 				
		77						
		 		 				
		 						
		 		 				-
OBSERVATIONS / NOTES	*# - 4	Application and	N 42.754	MAP:	2007 A 11.440	11 10	Server of	un weren
000211177111111111111111111111111111111	* 10	10 10	Continue water	3//	gar mare enge.	A THE SECRETARY OF SEC.	4	NAME OF BUILDING
			!					
			f	l				
	197		!	S				
	•		!	1				• •
			ł	1			14	
12 M			ļ	1				
,			,	1				
			!					
8			1				•	
			!					
			ļ	1				
			į	l				
			!	1				
			!				•	1. 1.
		55	- !	ŀ				.11
Circle if Applicable:	- 1	U e o	7. 45. 15.7	14.15.5	Signature	:(s):		
MS/MSD Duplicate ID No).:	·		14	l			
10				1	i			

ATTACHMENT 4 SURFACE WATER SAMPLE LOG SHEET

TE	Tetra Tech

)							Page	1 of 1
Project Sit Project No	te Name: 🗡 S	779 (03	5w 539	muá	Sample Sample	ID No.: Location:	235c	
Stream Spring			•			Sample C.O.C.		Lose	2 Lamp
[] Sprin [] Pond [] Lake						[] Low	Sample: Concentra		•
[] Other [] QA S	r: sample Type:					. () High	Concentr	ation	٠
SAMPLING	DATA:	Ę.		となり 機等	一度进行的	一郎は日本語	经产品的	AND TO THE	******
Date:	(9(2(1)	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time: Depth:	1320	Visuai	Standard	61	Degrees C	NTU	mg/l	96	mV
Method:		Clar	5-71	.041	13.71	13.2	6.11	15	-
SAMPLE C	OLLECTION IN	FORMATIO			一些情報學				- Service
	Analysis		Preser	vative		Container R	equiraments	<u> </u>	Collected
					 				150
						T			
						•			
		:							
			 						
					•				
•									
ARCEDIA	MONEY/NOTES	and the	in Kathadar K	e de sui 6	- MAD	Marin Droil and	Value of the state	"la de ad est	e at a . v (c) Stepen a parties.
UBSERVA	TIONS! NOTES		of and take 2	To the Edition	NIMAPA NE	部列的語代學院	in This contract	周 ₂ 号公益。2019	的中国的
		-						•	
							9		
					555				
		•							•
					ĺ				
					l				
					İ				
				}					
			t0	-	ŀ				
Circle if Ap	plicable:		5 V 60	5 G. W.	497 3 2 4	Signature	e(s):		
MS/MSD	Duplicate ID No).:							

SITE: NSA Crane – SWMU 23 **PHOTOGRAPHER:** K. Losekamp

VIEW: Southwest

DESCRIPTION: Rear view of paved area at Building 36.

#1 01/22/13

SITE: NSA Crane – SWMU 23 **PHOTOGRAPHER:** K. Losekamp

VIEW: Northeast

DESCRIPTION: Rear view of paved area at Building 36.

#2 01/22/13

SITE: NSA Crane – SWMU 23 PHOTOGRAPHER:

K. Losekamp **VIEW:** Northeast

DESCRIPTION: Geophysical survey utilizing ground penetrating radar in the area of the suspected UST at Building 36.

#3 01/22/13

SITE: NSA Crane – SWMU 23 **PHOTOGRAPHER:** K. Losekamp

VIEW: Northeast

DESCRIPTION: Geophysical survey EM61 in the area of the suspected UST at Building 36.

#4 01/22/13

NSA CRANE

SITE: NSA Crane – SWMU 23 PHOTOGRAPHER:

K. LosekampVIEW: Southeast

DESCRIPTION: View of headwall near sample location 23SB010.

#5 10/29/12

SITE: NSA Crane – SWMU 23 PHOTOGRAPHER:
K. Losekamp
VIEW: Southeast

DESCRIPTION: Close up view of headwall near sample location 23SB010.

#6 10/29/12

NSA CRANE

SITE: NSA Crane – SWMU 23 PHOTOGRAPHER:

K. LosekampVIEW: Southeast

DESCRIPTION: Close up view of headwall near sample location 23SB009.

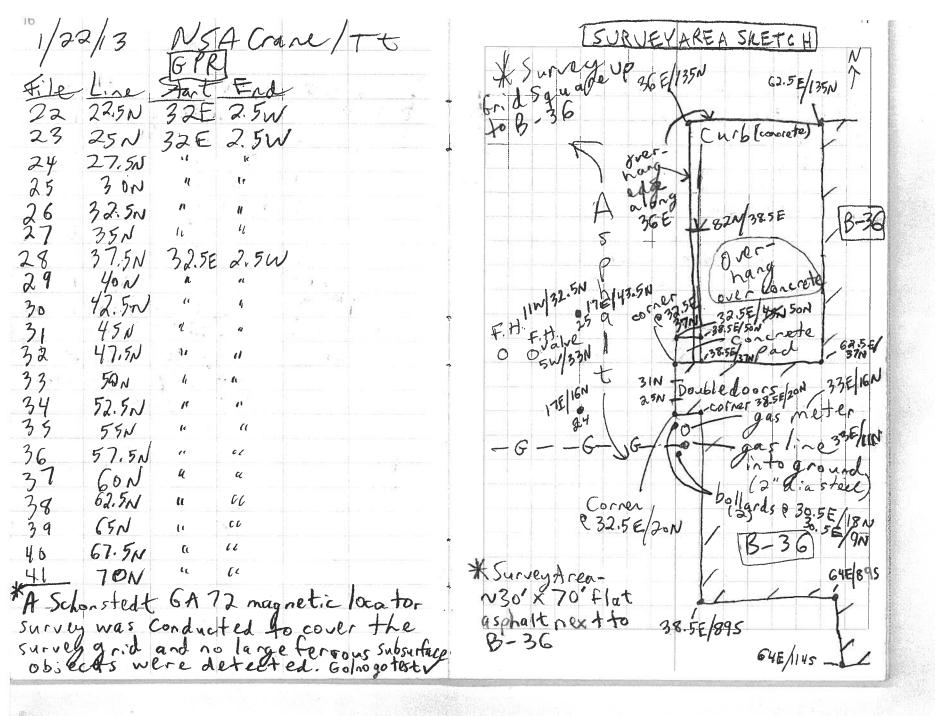
#7 10/29/12

SITE: NSA Crane – SWMU 23 **PHOTOGRAPHER:** K. Losekamp

VIEW: South

DESCRIPTION: View of oil/water separator located at the southwest corner of Building 36.

#8 10/29/12


November SIn

0830: KL + BRGG CSurvey) Onsite to survey all points.

1230: All points surveyed.

06-87

22/13 NSA Crane/Tt Tti Jin Coffnan and Kevin Lose Kamp at visitor's pass office 60830 to obtain badge for Coffman. Proceed to job trailer (Tt) and to see Tom Brent (Envi Coord.) Loadup auxillary survey equipment & head to Sumus tor glophy si cal survey today. Gophy sical Jurien Ob: Slarch For possible UST (steel) shown on historical plans Establish 30' x 70' survey (grid area - 5 ft. marks - for geophys using 2.5 ft line spacing. ferform EM61-mkg survey over grided survey a near after manufacturer's recommended setup.

1/22/13 NSA Crane/Tt About a I he delay topay due to al show heart for building tenant to move oversited forh lift out of way for survey to be conducted. Glophysical equipment packed, site sketch and survey tie; a Completed by about 4:30 pm and head offsite, for FESEX dropoff of geophysical Survey equipment, a Bloofing ton. DAC

MAY 18, 2013 (SATURDAY)

NEA CRANE SITE 23

AT SITE: STC/CR

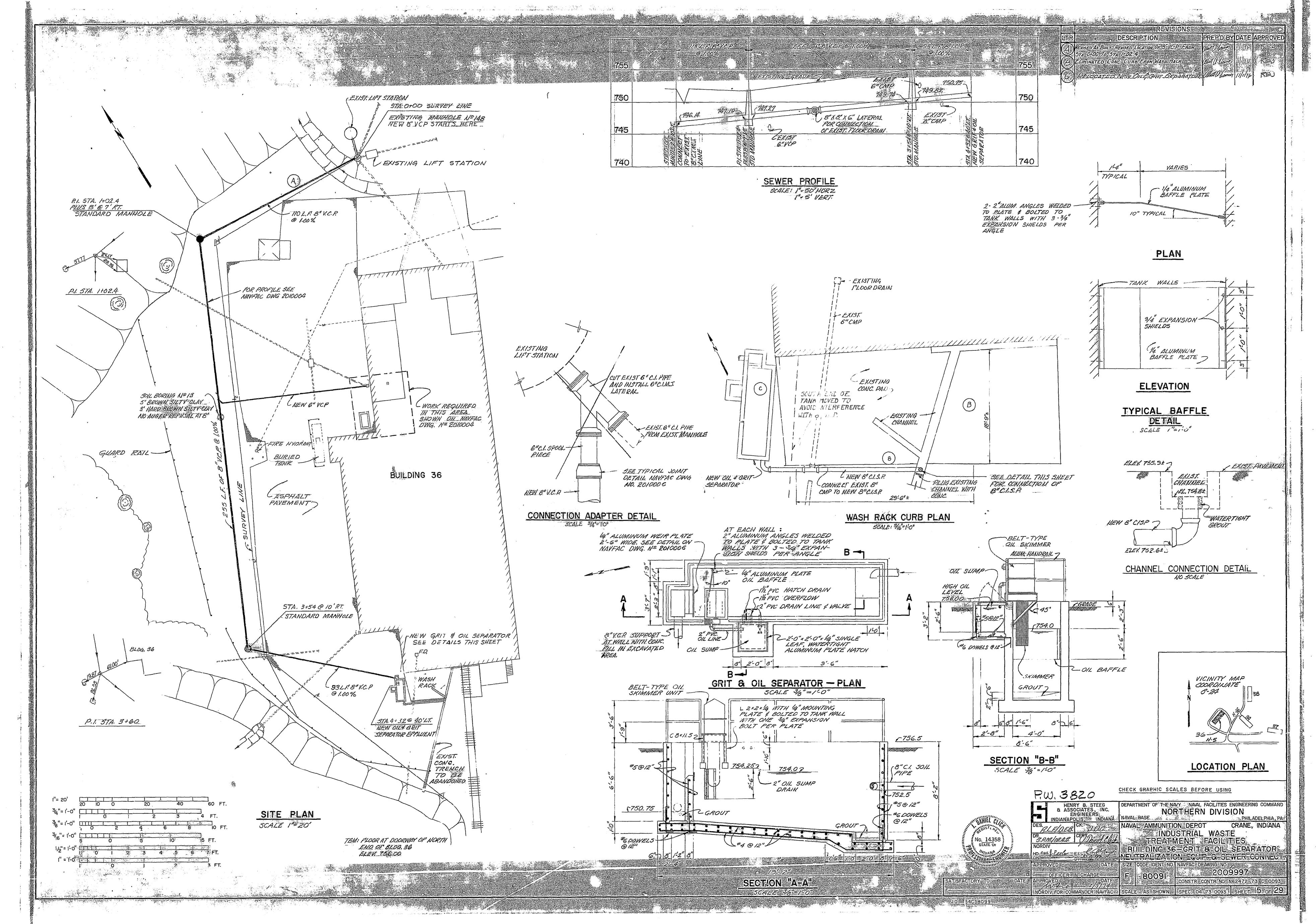
AM: CLOUDY, WARM (LT RAIN)

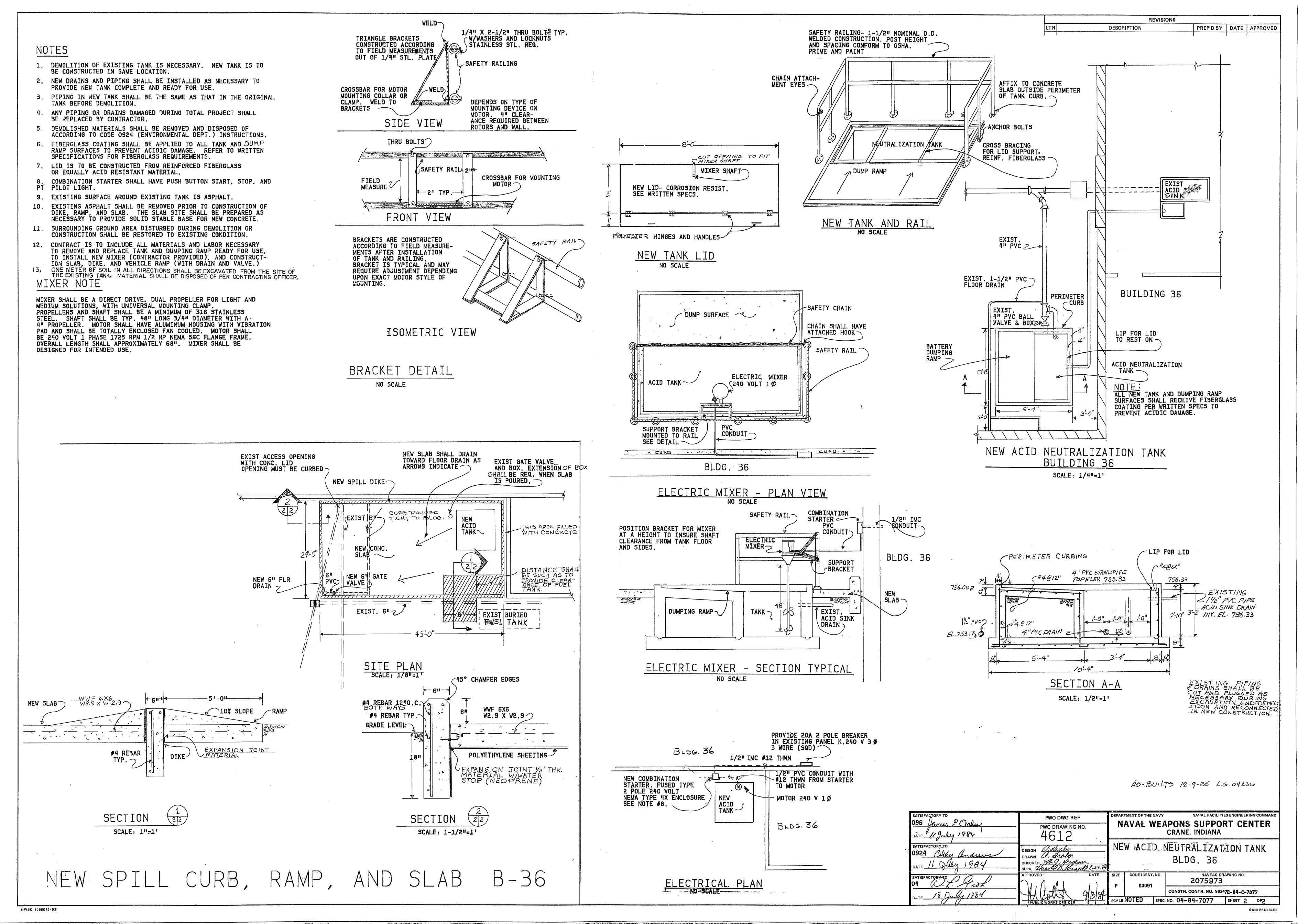
PM: 11

NOTE:

ORIGINAL ENTRIES MADE IN NB1460

PAGE [II. AFTER WORK AT UXO 7.


STC/CR WENT TO SITE 23.


1415: AT SITE FOR PAH SAMPLING
USING DPT RIG TO TAKE SAMPLES

DUE TO HARD GRAVEL/ASPHALT

USING DPT RIG TO TAKE SAMPLES
DUE TO HARD GRAVEL/ASPHALT
AT SURFACE. DRIVED 3 BORINGS
USING DDT RIG TO ± 41. SEE
BORING LOGS FOR DETAILS. SEE
SAMPLE LCG SHEETS AND COES
FOR SAMPLES TAKEN
1530: DONE WITH BORINGS AND
RETURN TO SITE TRAILER
160: AT TRAILER PLACE ICE ON
SAMPLES AND PREPARE FOR
SUNDAYS WORK.

APPENDIX B

ANALYTICAL DATA

- B.1 VALIDATED ANALYTICAL DATA SAMPLES COLLECTED THROUGH APRIL 2014
- **B.2 HUMAN HEALTH AND ECOLOGICAL RISK SUMMARIES**

B.1 VALIDATED ANALYTICAL DATA SAMPLES
COLLECTD THROUGH APRIL 2014

LOCATION	23/00-001	23/00-002	23/00-003	23/00-004	23/00-005	23/00-006	23/00-007	23/00-008	23/00-009	23/00-010	23/00-011	23/00-013
SAMPLE ID	23/00-001	23/00-002	23/00-003	23/00-004	23/00-005	23/00-006	23/00-007	23/00-008	23/00-009	23/00-010	23/00-011	23/00-013
SAMPLE DATE	19950718	19950718	19951116	19951116	19960222	19960222	19960222	19960222	19960222	19960222	19960222	19960222
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
DIOXINS/FURANS (UG/KG)	3333	3333	3333	3333	3333	3333	3333	3333	3333	3333	3333	3333
1,2,3,4,6,7,8,9-OCDD	5.6	0.93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8,9-OCDF	0.338 U	0.358 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
1,2,3,4,6,7,8-HPCDD	0.714 U	0.755 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HPCDF	0.081 U	0.0856 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HPCDF	0.175 U	0.185 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDD	0.476 U	0.503 U	NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA
1,2,3,4,7,8-HXCDF	0.614 U	0.649 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HXCDD	0.288 U	0.305 U	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
1,2,3,6,7,8-HXCDF	0.363 U	0.384 U	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
1,2,3,7,8,9-HXCDD	0.276 U	0.291 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDF	0.426 U	0.45 U	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
1,2,3,7,8-PECDD	0.526 U	0.556 U	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
1.2.3.7.8-PECDF	0.489 U	0.517 U	NA.	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.3.4.6.7.8-HXCDF	0.501 U	0.53 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.3.4.7.8-PECDF	0.614 U	0.649 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	0.0501 U	0.053 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA
2,3,7,8-TCDF	0.0627 U	0.0662 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007	0.00168	0.000279	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007 - HALFND	0.5444007	0.5739757	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDD	0.714 U	0.755 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDF	0.175 U	0.185 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDD	0.276 U	0.291 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDF	0.426 U	0.45 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDD	0.526 U	0.556 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDF	0.614 U	0.649 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDD	0.0501 U	0.74	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDF	0.0627 U	0.0662 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HERBICIDES (UG/KG)												
2,4,5-T	39 U	44 U	NA	NA	1.8 JBP	32 U	28 U	6.3 JBP	29 U	31 U	31 U	1.8 JBP
2,4,5-TP (SILVEX)	39 U	44 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	39 U	44 U	NA	NA	120 U	130 U	11 JP	22 JBP	120 U	120 U	130 U	100 U
METALS (MG/KG)												
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NICKEL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VANADIUM	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA
ZINC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALS (UG/KG)	2000 11	2000 11	NA	NIA	1F00 PM	4200 PM	000 001	1 A DNI	1000 PM	440 DN	E40 DN	440 PM
ANTIMONY	2600 U	3000 U	NA NA	NA NA	1500 BN	4200 BN	990 BN	1.4 BN	1800 BN	440 BN	540 BN	440 BN
ARSENIC BARIUM	10700 74700	6800	NA NA	NA NA	5400	4500 66200	6000	5900 48900	6300 43600	6900 70700	5900	5100 25400
		120000			30800		40600				25600	
BERYLLIUM CADMIUM	670 520 U	1900	NA NA	NA NA	170 B 30 B	220 B 250 U	280 B 190 B	290 B 23 U	320 B 23 U	370 B 25 U	590 38 U	2200 21 U
CHROMIUM CHROMIUM	22800	3000 23000	NA NA	NA NA	30 B 30500	11300	190 B 11900	11900	14400	12500	11200	10400
COBALT	5200 5200	39100 39100	NA NA	NA NA	2800	2700	2600	3500	4500	6300	7700	9300
COPPER	14700	139000	NA NA	NA NA	11200	16900	16700	11600	17700	12100	8200	9300 8700
LEAD	30800	40100	NA NA	NA NA	227000 N	776000 N	109000 N	11600 119000 N	161000	16800 N	10500 N	15300 N
LITHIUM	NA	40100 NA	NA NA	NA NA	1700 B	3900 B	3500 B	4600 B	5900 B	6900 B	2300 B	4100 B
MERCURY	100 U	120 U	NA NA	NA NA	140 U	120 U	120 U	140 U	140 U	150 U	2300 B 140 U	100 U
NICKEL	13500	80200	NA NA	NA NA	6400	10100	5500	6900	13300	9600	86600	81100
SELENIUM	650 U	740 U	NA NA	NA NA	370 U	400 U	350 BN	350 U	350 U	900	810	320 B
SILVER	1000 U	4900	NA NA	NA NA	94 U	110 U	160 B	93 U	94 U	110 U	110 U	73 U
THALLIUM	1300 U	1500 U	NA NA	NA NA	480 U	530 U	450 U	480 U	480 U	530 U	550 U	370 U
TIN	32700 U	36000 U	NA NA	NA NA	1200 BN	1800 B	1600 BN	1800 BN	3500 B	1200 BN	1400 BN	950 B
VANADIUM	25500	20600	NA NA	NA NA	7300 BN	10500 B	12400 12400	14500 BN	15100	21100 BN	10100 DN	11900
ZINC	45900	152000	NA NA	NA NA	41900	45100	42200	45400	92400	28600	91600	80700
MISCELLANEOUS PARAMETERS (%		152000	IVA	ING	11300	10100	12200	15 100	JE 100	20000	21000	50700
ACTINOLITE	NA NA	NA	0 U	0 U	NA	NA	NA	NA	NA	NA	NA	NA
AMOSITE	NA NA	NA NA	0 U	0 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANTHOPHYLLITE	NA NA	NA NA	0 U	0 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ASBESTOS	NA NA	NA NA	0 U	0 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSOTILE	NA NA	NA NA	0 U	0 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CROCIDOLITE	NA NA	NA NA	0 U	0 U	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
TREMOLITE	NA NA	NA NA	0 U	0 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
· · · · · · · · · · · · · · · · · · ·												

LOCATION SAMPLE ID	23/00-001 23/00-001	23/00-002 23/00-002	23/00-003 23/00-003	23/00-004 23/00-004	23/00-005 23/00-005	23/00-006 23/00-006	23/00-007 23/00-007	23/00-008 23/00-008	23/00-009 23/00-009	23/00-010 23/00-010	23/00-011 23/00-011	23/00-013 23/00-013
SAMPLE DATE SAMPLE CODE	19950718 NORMAL	19950718 NORMAL	19951116 NORMAL	19951116 NORMAL	19960222 NORMAL							
MATRIX SAMPLE TYPE	SO NORMAL											
SUBMATRIX	SS	SS	SS	NORMAL SS	SS	NORMAL SS	SS	NORMAL SS	SS	SS	NORMAL SS	SS
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
MISCELLANEOUS PARAMETERS (F)	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
FLASHPOINT	NA	NA	203 U	203	NA							
MISCELLANEOUS PARAMETERS (MG/	NA	NA NA	NA NA	NA NA	NA NA	NA						
MISCELLANEOUS PARAMETERS (S.U.)												
MISCELLANEOUS PARAMETERS (UG/I	NA	NA	8.9	8.9	NA							
CYANIDE	1300 U	1500 U	NA	NA	59 UN	630 UN	570 UN	580 UN	590 UN	620 UN	630 U	520 U
SULFIDE ORGANOPHOSPHOROUS PESTICIDES	52000 U	59000 U	NA	NA	56000	37000	33000 U	33000 U	36000	36000	47000	70000
DIMETHOATE	42 U	48 U	NA	NA	28 P	14	8.4 JP	7.2 JP	12 U	18 P	16	10 U
DISULFOTON ETHYL PARATHION	21 U 21 U	24 U 24 U	NA NA	NA NA	12 U NA	13 U NA	11 U NA	12 U NA	17 NA	12 U NA	13 U NA	10 U NA
FAMPHUR	21 U	24 U	NA	NA	2.7 JP	13 P	11 U	12 U	12 U	30 P	9 JP	10 U
METHYL PARATHION PHORATE	21 U 21 U	24 U 24 U	NA NA									
PRONAMIDE	21 U	24 U	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
SULFOTEPP PCRS (MG (KG)	2100 U	2400 U	NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
PCBS (MG/KG) AROCLOR-1016	NA											
AROCLOR-1221	NA NA											
AROCLOR-1232 AROCLOR-1242	NA NA											
AROCLOR-1248	NA											
AROCLOR-1254 AROCLOR-1260	NA NA											
PESTICIDES/PCBS (UG/KG)												
1,1-DICHLOROETHENE 4,4'-DDD	NA 4.2 U	NA 4.9 U	NA NA	NA NA	0.91 JP 0.5 J	0.14 JP 0.17 JP	0.18 JP 0.25 JP	3.4 JP 0.24 JP	0.18 JP 1.5 JP	0.09 JP 0.16 JP	1.2 JP 4.4 U	0.25 J 3.6 U
4,4'-DDE	8	4.9 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT ALDRIN	6.2 2.1 U	4.9 U 2.4 U	NA NA	NA NA	0.61 JB 1.2 U	0.41 JB 1.3 U	0.75 JBP 0.12 J	0.37 JBP 0.2 JP	7.9 BP 0.1 JP	0.12 JBP 0.053 JP	0.11 JBP 0.093 JBP	0.098 JBP 0.034 JP
ALPHA-BHC	2.1 U	2.4 U	NA NA	NA NA	0.067 JP	1.3 U	1.1 U	1.2 U	0.1 JP 0.048 JP	1.2 U	1.3 U	1 U
ALPHA-CHLORDANE AROCLOR-1016	2.1 U 42 U	2.4 U 49 U	NA NA	NA NA	NA 23 U	NA 25 U	NA 22.11	NA 23 U	NA 23 U	NA 24 U	NA 25 U	NA 20 U
AROCLOR-1016 AROCLOR-1221	42 U 84 U	97 U	NA NA	NA NA	23 U	25 U	23 U 23 U	23 U	23 U	24 U	25 U	20 U
AROCLOR-1232	42 U	49 U	NA	NA	23 U	25 U	23 U	23 U	23 U	24 U	25 U	20 U
AROCLOR-1242 AROCLOR-1248	42 U 42 U	49 U 49 U	NA NA	NA NA	23 U 23 U	25 U 25 U	23 U 23 U	23 U 23 U	23 U 23 U	24 U 24 U	25 U 25 U	20 U 20 U
AROCLOR-1254	42 U	49 U	NA	NA	23 U	25 U	23 U	23 U	23 U	24 U	25 U	20 U
AROCLOR-1260 BETA-BHC	42 U 2.1 U	49 U 2.4 U	NA NA	NA NA	23 U 0.49 JP	25 U 1 JBP	23 U 0.19 J	23 U 0.2 JP	23 U 1.5	24 U 0.27 JP	25 U 1.3 U	20 U 1 U
CHLORDANE	NA	NA	NA	NA	4.7 U	5 U	4.5 U	4.6 U	4.6 U	4.8 U	5 U	4.1 U
DELTA-BHC DIELDRIN	2.1 U 4.2 U	2.4 U 4.9 U	NA NA	NA NA	0.11 JP 0.51 JP	1.3 U 0.37 JP	1.1 U 0.18 JP	1.2 U 0.48 JP	0.053 J 3.2 P	0.059 JP 1.8 U	0.12 JP 1.9 U	1 U 1.5 U
ENDOSULFAN I	2.1 U	2.4 U	NA NA	NA NA	0.4 JP	0.13 JBP	1.7 U	0.5 JP	0.89 JP	0.21 J	1.9 U	1.5 U
ENDOSULFAN II	4.2 U	4.9 U	NA NA	NA NA	0.48 JBP	0.1 JBP	0.49 JBP	0.25 JBP	0.84 JBP	4.2 U	0.123 JP	3.6 U
ENDOSULFAN SULFATE ENDRIN	4.2 U 4.2 U	4.9 U 4.9 U	NA NA	NA NA	0.12 JP 0.47 JP	0.14 JP 0.6 J	0.16 JP 0.23 JP	0.075 JP 0.61 JP	1.4 JP 1.3 JP	0.1 JP 0.55 JP	0.17 JP 3.1 U	0.19 JP 2.6 U
ENDRIN ALDEHYDE	4.2 U	4.9 U	NA NA	NA NA	1.7 P	4.1 P	0.6 JP	0.19 JP	2.5 P	0.35 JP	0.17 JP	1 U
ENDRIN KETONE GAMMA-BHC (LINDANE)	4.2 U 4.2 U	4.9 U 4.9 U	NA NA	NA NA	NA 0.047 J	NA 1.3 U	NA 1.1 U	NA 0.098 JP	NA 0.37 J	NA 0.015 JP	NA 1.3 U	NA 1 U
GAMMA-CHLORDANE	2.1 U	2.4 U	NA									
HEPTACHLOR HEPTACHLOR EPOXIDE	2.1 U 2.1 U	2.4 U 2.4 U	NA NA	NA NA	0.043 JBP 0.083 JP	1.3 U 1.3 U	1.1 U 0.16 JP	0.059 JBP 1 JP	0.16 JBP 2.3	0.048 JBP 0.057 J	0.063 JBP 1.3 U	0.038 JBP 1 U
KEPONE	42 U	49 U	NA									
METHOXYCHLOR PHORATE	21 U NA	24 U NA	NA NA	NA NA	5.8 BP 12 U	1 JBP 13 U	1.1 JBP 11 U	0.46 JBP 12 U	3.8 JBP 12 U	0.49 JBP 12 U	0.52 JBP 13 U	0.2 JBP 10 U
TOXAPHENE	210 U	240 U	NA NA	NA NA	23 U	25 U	23 U	23 U	23 U	24 U	25 U	20 U
PETROLEUM HYDROCARBONS (MG/K DRO (C08-C28)	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
DRO (C08-C34)	NA											
GASOLINE RANGE ORGANICS	NA											
POLYCYCLIC AROMATIC HYDROCARE 1-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	NA	NA NA										
ACENAPHTHENE ACENAPHTHYLENE	NA NA											
ANTHRACENE	NA											
BAP EQUIVALENT-HALFND BAP EQUIVALENT-POS	NA NA											
BENZO(A)ANTHRACENE	NA											
BENZO(A)PYRENE	NA NA											
BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(K)FLUORANTHENE	NA											
CHRYSENE	NA											

LOCATION	23/00-001	23/00-002	23/00-003	23/00-004	23/00-005	23/00-006	23/00-007	23/00-008	23/00-009	23/00-010	23/00-011	23/00-013
SAMPLE ID SAMPLE DATE	23/00-001 19950718	23/00-002 19950718	23/00-003 19951116	23/00-004 19951116	23/00-005 19960222	23/00-006 19960222	23/00-007 19960222	23/00-008 19960222	23/00-009 19960222	23/00-010 19960222	23/00-011 19960222	23/00-013 19960222
SAMPLE CODE	NORMAL											
MATRIX SAMPLE TYPE	SO NORMAL											
SUBMATRIX	SS											
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH DIBENZO(A.H)ANTHRACENE	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA	-9999 NA
FLUORANTHENE	NA NA											
FLUORENE	NA											
INDENO(1,2,3-CD)PYRENE NAPHTHALENE	NA NA											
PHENANTHRENE	NA NA											
PYRENE	NA											
SEMIVOLATILES (UG/KG) 1,2,4,5-TETRACHLOROBENZENE	330 U	340 U	NA	NA	1500 U	1600 U	1500 U	1500 U	1500 U	1600 U	1600 U	1400 U
1,2,4-TRICHLOROBENZENE	330 U	340 U	NA NA	NA NA	680 U	700 U	630 U	640 U	640 U	680 U	700 U	570 U
1,2-DICHLOROBENZENE	330 U	340 U	NA	NA	690 U	750 U	680 U	690 U	690 U	730 U	750 U	610 U
1,3,5-TRINITROBENZENE 1,3-DICHLOROBENZENE	330 U 330 U	340 U 340 U	NA NA	NA NA	1100 U 600 U	1200 U 650 U	1000 U 590 U	1100 U 590 U	1100 U 600 U	1100 U 630 U	1200 U 650 U	950 U 530 U
1,3-DINITROBENZENE	330 U	340 U	NA NA	NA NA	660 U	710 U	840 U	650 U	650 U	690 U	710 U	580 U
1,4-DICHLOROBENZENE	330 U	340 U	NA	NA	610 U	660 U	600 U	600 U	810 U	640 U	660 U	540 U
1,4-NAPHTHOQUINONE 1,4-PHENYLENEDIAMINE	330 U 330 U	340 U 340 U	NA NA	NA NA	1900 U 780 U	2000 U 840 U	1800 U 760 U	1900 U 770 U	1900 U 770 U	2000 U 810 U	2000 U 840 U	1700 U 690 U
1-NAPHTHYLAMINE	330 U	340 U	NA NA	NA NA	1600 U	1800 U	1600 U	1600 U	1600 U	1700 U	1800 U	1500 U
2,3,4,6-TETRACHLOROPHENOL	330 U	340 U	NA	NA	1600 U	1800 U	1600 U	1600 U	1600 U	1700 U	1800 U	1500 U
2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL	330 U 330 U	340 U 340 U	NA NA	NA NA	1500 U 1500 U	1600 U 1600 U	1500 U 1500 U	1500 U 1500 U	1500 U 1500 U	1600 U 1600 U	1600 U 1600 U	1400 U 1400 U
2,4-DICHLOROPHENOL	330 U	340 U	NA NA	NA NA	650 U	700 U	630 U	640 U	640 U	680 U	700 U	570 U
2,4-DIMETHYLPHENOL	330 U	340 U	NA NA	NA NA	720 U	770 U	700 U	710 U	710 U	750 U	770 U	640 U
2,4-DINITROPHENOL 2,4-DINITROTOLUENE	1600 U 330 U	1700 U 340 U	NA NA	NA NA	2000 U 780 U	2200 U 840 U	2000 U 760 U	2000 U 770 U	2000 U 770 U	2100 U 810 U	2200 U 840 U	1800 U 690 U
2,6-DICHLOROPHENOL	330 U	340 U	NA NA	NA NA	1400 U	1500 U	1400 U	1400 U	1400 U	1500 U	1500 U	1200 U
2,6-DINITROTOLUENE	330 U	340 U	NA	NA	880 U	950 U	860 U	870 U	880 U	930 U	950 U	780 U
2-ACETYLAMINOFLUORENE 2-CHLORONAPHTHALENE	330 U 330 U	340 U 340 U	NA NA	NA NA	NA 1100 U	NA 1200 U	NA 1100 U	NA 1100 U	NA 1100 U	NA 1200 U	NA 1200 U	NA 1000 U
2-CHLOROPHENOL	330 U	340 U	NA NA	NA NA	740 U	800 U	720 U	730 U	740 U	780 U	800 U	660 U
2-METHYLNAPHTHALENE	330 U	340 U	NA	NA	990 U	1100 U	970 U	980 U	980 U	1000 U	1100 U	880 U
2-METHYLPHENOL 2-NAPHTHYLAMINE	330 U 330 U	340 U 340 U	NA NA	NA NA	760 U 1000 U	820 U 1100 U	750 U 990 U	760 U 1000 U	760 U 1000 U	800 U 1100 U	820 U 1100 U	680 U 900 U
2-NITROANILINE	1600 U	1700 U	NA NA	NA NA	1300 U	1400 U	1300 U	1300 U	1300 U	1400 U	1400 U	1100 U
2-NITROPHENOL	330 U	340 U	NA	NA	730 U	780 U	710 U	720 U	720 U	770 U	780 U	650 U
2-PICOLINE 3,3'-DICHLOROBENZIDINE	330 U 660 U	340 U 680 U	NA NA	NA NA	1400 U 590 U	1500 U 830 U	1400 U 570 U	1400 U 580 U	1400 U 580 U	1500 U 620 U	1500 U 630 U	1200 U 520 U
3,3'-DIMETHYLBENZIDINE	330 U	340 U	NA	NA	530 U	570 U	520 U	520 U	530 U	560 U	570 U	470 U
3-CHLOROPROPENE	130 U	150 U	NA NA									
3-METHYLCHOLANTHRENE 3-METHYLPHENOL	330 U 330 U	340 U 340 U	NA NA	NA NA	NA 1500 U	NA 1600 U	NA 1500 U	NA 1500 U	NA 1500 U	NA 1600 U	NA 1600 U	NA 1400 U
3-NITROANILINE	1600 U	1700 U	NA NA	NA	810 U	870 U	790 U	800 U	810 U	850 U	870 U	720 U
4,6-DINITRO-2-METHYLPHENOL 4-AMINOBIPHENYL	1600 U 330 U	1700 U 340 U	NA NA	NA NA	2100 U	2300 U	2100 U	2100 U 480 U	2100 U	2200 U	2300 U 520 U	1900 U
4-AMINOBIPHENYL 4-BROMOPHENYL PHENYL ETHER	330 U	340 U	NA NA	NA NA	480 U 880 U	520 U 950 U	470 U 860 U	870 U	480 U 880 U	510 U 930 U	950 U	430 U 780 U
4-CHLORO-3-METHYLPHENOL	330 U	340 U	NA	NA	220 U	240 U	220 U	220 U	220 U	230 U	240 U	200 U
4-CHLOROANILINE	660 U 330 U	680 U 340 U	NA NA	NA NA	810 U 710 U	870 U	790 U 690 U	800 U 700 U	810 U 700 U	850 U 740 U	870 U 760 U	720 U 620 U
4-CHLOROPHENYL PHENYL ETHER 4-METHYLPHENOL	330 U	340 U	NA NA	NA NA	1500 U	760 U 1600 U	1500 U	1500 U	1500 U	1600 U	1600 U	1400 U
4-NITROANILINE	1600 U	1700 U	NA	NA	1300 U	1400 U	1300 U	1300 U	1300 U	1400 U	1400 U	1100 U
4-NITROPHENOL 4-NITROQUINOLINE-1-OXIDE	330 U 330 U	340 U 340 U	NA NA	NA NA	810 U 5600 U	870 U 6100 U	790 U 5500 U	800 U 5600 U	810 U 5600 U	850 U 5900 U	870 U 6100 U	720 U 5000 U
5-NITRO-O-TOLUIDINE	330 U	340 U	NA NA	NA NA	1200 U	1300 U	1100 U	1200 U	1200 U	1200 U	1300 U	1000 U
7,12-DIMETHYLBENZ(A)ANTHRACENE	330 U	340 U	NA NA	NA NA	480 U	520 U	470 U	480 U	480 U	510 U	520 U	430 U
A,A-DIMETHYLPHENETHYLAMINE ACENAPHTHENE	330 U 330 U	340 U 340 U	NA NA	NA NA	NA 780 U	NA 64 J	NA 760 U	NA 770 U	NA 770 U	NA 810 U	NA 840 U	NA 690 U
ACENAPHTHYLENE	330 U	340 U	NA	NA	790 U	850 U	770 U	780 U	780 U	830 U	850 U	700 U
ACETOPHENONE	330 U	340 U	NA NA	NA NA	780 U	840 U	760 U	770 U	770 U	810 U	840 U	690 U
ACROLEIN ACRYLONITRILE	1300 U 1300 U	1500 U 1500 U	NA NA	NA NA	NA 250 U	NA 270 U	NA 240 U	NA 240 U	NA 250 U	NA 260 U	NA 270 U	NA 220 U
ANILINE	330 U	340 U	NA	NA	660 U	710 U	840 U	650 U	650 U	690 U	710 U	580 U
ANTHRACENE	330 U	340 U	NA NA	NA NA	870 U	77 J	850 U	860 U	860 U	910 U	940 U	770 U
ARAMITE BENZO(A)ANTHRACENE	330 U 330 U	340 U 340 U	NA NA	NA NA	780 U 40 J	840 U 240 J	760 U 760 U	770 U 770 U	770 U 34 J	810 U 810 U	840 U 840 U	690 U 690 U
BENZO(A)PYRENE	330 U	340 U	NA									
BENZO(B)FLUORANTHENE	330 U	340 U	NA NA	NA NA	110 XJ	420 XJ	880 U	900 U	87 XJ	950 U	970 U	800 U
BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE	330 U 330 U	340 U 340 U	NA NA	NA NA	43 J 110 XJ	110 J 440 XJ	710 U 710 U	720 U 720 U	720 U 92 XJ	770 U 770 U	780 U 780 U	650 U 650 U
BENZYL ALCOHOL	660 U	680 U	NA	NA	650 U	700 U	630 U	640 U	640 U	680 U	700 U	570 U
BIS(2-CHLOROETHOXY)METHANE	330 U	340 U	NA NA	NA NA	790 U	850 U	770 U	780 U	780 U	830 U	850 U	700 U
BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROISOPROPYL)ETHER	330 U 330 U	340 U 340 U	NA NA	NA NA	330 U 760 U	350 U 820 U	320 U 750 U	330 U 760 U	330 U 760 U	350 U 800 U	350 U 820 U	290 U 680 U
BIS(2-ETHYLHEXYL)PHTHALATE	330 U	340 U	NA	NA	70 J	66 J	67 J	200 J	96 J	46 J	69 J	44 J
BUTYL BENZYL PHTHALATE	330 U	340 U	NA	NA	800 U	860 U	780 U	790 U	790 U	840 U	860 U	710 U
	04 !!	07 !!	N I A	N I A								
CHLOROBENZILATE CHRYSENE	84 U 330 U	97 U 340 U	NA NA	NA NA	840 U 54 J	900 U 280 J	820 U 620 U	830 U 630 U	830 U 46 J	880 U 670 U	900 U 680 U	740 U 560 U

		1	1			1		1	1	Т .	T .	
LOCATION	23/00-001	23/00-002	23/00-003	23/00-004	23/00-005	23/00-006	23/00-007	23/00-008	23/00-009	23/00-010	23/00-011	23/00-013
SAMPLE ID SAMPLE DATE	23/00-001 19950718	23/00-002 19950718	23/00-003 19951116	23/00-004 19951116	23/00-005 19960222	23/00-006 19960222	23/00-007 19960222	23/00-008 19960222	23/00-009 19960222	23/00-010 19960222	23/00-011 19960222	23/00-013 19960222
SAMPLE CODE	NORMAL											
MATRIX	SO											
SAMPLE TYPE	NORMAL											
SUBMATRIX	SS											
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999 220 H	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
DIBENZO(A,H)ANTHRACENE DIBENZOFURAN	330 U 330 U	340 U 340 U	NA NA	NA NA	210 U 810 U	230 U 870 U	210 U 790 U	210 U 800 U	210 U 810 U	220 U 850 U	230 U 870 U	190 U 720 U
DIETHYL PHTHALATE	330 U	340 U	NA NA	NA NA	850 U	910 U	830 U	840 U	840 U	890 U	910 U	750 U
DIMETHYL PHTHALATE	330 U	340 U	NA NA	NA	1100 U	1200 U	1100 U	1100 U	1100 U	1200 U	1200 U	1000 U
DI-N-BUTYL PHTHALATE	330 U	340 U	NA	NA	910 U	970 U	880 U	900 U	900 U	950 U	970 U	800 U
DI-N-OCTYL PHTHALATE	330 U	340 U	NA	NA	560 U	610 U	550 U	560 U	560 U	590 U	610 U	500 U
DIPHENYLAMINE	330 U	340 U	NA	NA	1600 U	1800 U	1800 U	1600 U	1600 U	1700 U	1800 U	1500 U
ETHYL METHANE SULFONATE	330 U 330 U	340 U 340 U	NA NA	NA NA	710 U	760 U	690 U 1100 U	700 U 1100 U	700 U 45 J	740 U 1100 U	760 U 1200 U	620 U
FLUORANTHENE FLUORENE	330 U	340 U	NA NA	NA NA	83 J 810 U	520 J 58 J	790 U	800 U	810 U	850 U	870 U	960 U 720 U
HEXACHLOROBENZENE	330 U	340 U	NA NA	NA NA	910 U	970 U	880 U	900 U	900 U	950 U	970 U	800 U
HEXACHLOROBUTADIENE	330 U	340 U	NA NA	NA	660 U	710 U	640 U	650 U	650 U	690 U	710 U	580 U
HEXACHLOROCYCLOPENTADIENE	330 U	340 U	NA	NA	780 U	840 U	760 U	770 U	770 U	810 U	840 U	690 U
HEXACHLOROETHANE	330 U	340 U	NA	NA	710 U	760 U	690 U	700 U	700 U	740 U	760 U	620 U
HEXACHLOROPROPENE	330 U	340 U	NA NA	NA NA	670 U	720 U	660 U	660 U	670 U	700 U	720 U	590 U
INDENO(1,2,3-CD)PYRENE ISOBUTANOL	330 U 1000 U	340 U 1000 U	NA NA	NA NA	540 U NA	110 J NA	530 U NA	530 U NA	540 U NA	570 U NA	580 U NA	480 U NA
ISODRIN	NA	1000 U NA	NA NA	NA NA	1100 U	1200 U	1100 U	1100 U	1100 U	1100 U	1200 U	960 U
ISOPHORONE	330 U	340 U	NA NA	NA NA	800 U	860 U	780 U	790 U	790 U	840 U	860 U	710 U
ISOSAFROLE	330 U	340 U	NA NA	NA	1500 U	1600 U	1500 U	1500 U	1500 U	1600 U	1600 U	1400 U
METHAPYRILENE	330 U	340 U	NA	NA	1500 U	1600 U	1500 U	1500 U	1500 U	1600 U	1600 U	1400 U
METHYL METHANE SULFONATE	330 U	340 U	NA	NA	820 U	890 U	800 U	810 U	820 U	860 U	890 U	730 U
NAPHTHALENE	330 U	340 U	NA	NA	780 U	840 U	760 U	770 U	770 U	810 U	840 U	690 U
NITROBENZENE	330 U	340 U	NA NA	NA NA	800 U	860 U	780 U	790 U	790 U	840 U	860 U	710 U
N-NITROSODIETHYLAMINE N-NITROSODIMETHYLAMINE	330 U NA	340 U NA	NA NA	NA NA	260 U 310 U	280 U 330 U	260 U 300 U	260 U 300 U	260 U 300 U	280 U 320 U	280 U 330 U	230 U 270 U
N-NITROSO-DI-N-BUTYLAMINE	330 U	340 U	NA NA	NA NA	180 U	190 U	170 U	170 U	180 U	190 U	190 U	160 U
N-NITROSO-DI-N-PROPYLAMINE	330 U	340 U	NA NA	NA NA	280 U	300 U	280 U	280 U	280 U	300 U	300 U	250 U
N-NITROSODIPHENYLAMINE	330 U	340 U	NA	NA	1600 U	1800 U	1600 U	1600 U	1600 U	1700 U	1800 U	1500 U
N-NITROSOMETHYLETHYLAMINE	330 U	340 U	NA	NA	280 U	300 U	280 U	280 U	280 U	300 U	300 U	250 U
N-NITROSOMORPHOLINE	330 U	340 U	NA	NA	880 U	950 U	860 U	870 U	880 U	930 U	950 U	780 U
N-NITROSOPIPERIDINE	330 U	340 U	NA NA	NA NA	870 U	940 U	850 U	860 U	860 U	910 U	940 U	770 U
N-NITROSOPYRROLIDINE O,O,O-TRIETHYL PHOSPHOROTHIOATE	330 U 330 U	340 U 340 U	NA NA	NA NA	620 U 6200 U	670 U 6700 U	610 U 6100 U	620 U 6200 U	620 U 6200 U	650 U 6500 U	670 U 6700 U	55 U 5500 U
O-TOLUIDINE	330 U	340 U	NA NA	NA NA	NA							
P-DIMETHYLAMINOAZOBENZENE	330 U	340 U	NA NA	NA	790 U	850 U	770 U	780 U	780 U	830 U	850 U	700 U
PENTACHLOROBENZENE	330 U	340 U	NA	NA	780 U	840 U	760 U	770 U	770 U	810 U	840 U	690 U
PENTACHLOROPHENOL	1600 U	1700 U	NA	NA	1600 U	1800 U	1600 U	1600 U	1600 U	1700 U	1800 U	1500 U
PHENACETIN	330 U	340 U	NA	NA	720 U	770 U	700 U	710 U	710 U	750 U	770 U	640 U
PHENANTHRENE	330 U 330 U	340 U 340 U	NA NA	NA NA	46 J 670 U	470 J 720 U	710 U 660 U	720 U 660 U	720 U 570 U	770 U 700 U	780 U 720 U	650 U 590 U
PHENOL PRONAMIDE	NA	NA	NA NA	NA NA	760 U	820 U	750 U	760 U	760 U	800 U	820 U	680 U
PYRENE	330 U	340 U	NA NA	NA NA	100 J	540 J	840 U	850 U	53 J	900 U	920 U	760 U
PYRIDINE	330 U	340 U	NA	NA	650 U	700 U	630 U	640 U	640 U	680 U	700 U	570 U
SAFROLE	330 U	340 U	NA	NA	110	730 U	670 U	870 U	680 U	720 U	730 U	600 U
THIONAZIN	330 U	340 U	NA									
TCLP HERBICIDES (UG/L)	NA	NA	0.5 U	0.5 U	NA	NA NA	NA.	NA	NA	NA	NA.	NA NA
2,4,5-TP (SILVEX) 2.4-D	NA NA	NA NA	0.5 U	0.5 U	NA NA							
TCLP METALS (UG/L)	INA	INA	0.5 0	0.5 0	IVA	INA	IVA	INA	INA	IVA	INA	IVA
ARSENIC	NA	NA	20 U	20 U	NA							
BARIUM	NA	NA	1270	766	NA							
CADMIUM	NA	NA	40 U	40 U	NA							
CHROMIUM	NA	NA	100 U	100 U	NA							
LEAD	NA NA	NA NA	100 U	100 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
MERCURY CEL ENTLIM	NA NA	NA NA	0.2 U	0.2 U 20 U	NA NA							
SELENIUM SILVER	NA NA	NA NA	20 U 50 U	50 U	NA NA							
TCLP MISCELLANEOUS (UG/L)	IVA	ING	30 0	30 0	IVO	ING	I IV	IVA	IVA	IVA	LVO	IVA
PAINT FILTER	NA	NA	0 U	0 U	NA							
REACTIVE CYANIDE	NA	NA	2000 U	2000 U	NA							
REACTIVE SULFIDE	NA	NA	40000 U	48000	NA							
TCLP PESTICIDE/PCBS (UG/L)			0.4 ::									
ALPHA-CHLORDANE	NA NA	NA NA	0.1 U	0.1 U	NA NA							
ENDRIN GAMMA-BHC (LINDANE)	NA NA	NA NA	0.2 U 0.2 U	0.2 U 0.2 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	0.2 U 0.1 U	0.2 U 0.1 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	0.1 U	0.1 U	NA NA							
HEPTACHLOR EPOXIDE	NA NA	NA NA	0.1 U	0.1 U	NA	NA NA						
METHOXYCHLOR	NA	NA	1 U	1 U	NA							
TOXAPHENE	NA	NA	10 U	10 U	NA							

LOCATION SAMPLE ID SAMPLE DATE SAMPLE CODE	23/00-001 23/00-001 19950718 NORMAL	23/00-002 23/00-002 19950718 NORMAL	23/00-003 23/00-003 19951116 NORMAL	23/00-004 23/00-004 19951116 NORMAL	23/00-005 23/00-005 19960222 NORMAL	23/00-006 23/00-006 19960222 NORMAL	23/00-007 23/00-007 19960222 NORMAL	23/00-008 23/00-008 19960222 NORMAL	23/00-009 23/00-009 19960222 NORMAL	23/00-010 23/00-010 19960222 NORMAL	23/00-011 23/00-011 19960222 NORMAL	23/00-013 23/00-013 19960222 NORMAL
MATRIX SAMPLE TYPE	SO NORMAL											
SUBMATRIX	SS											
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
TCLP VOLATILES (UG/L)												
1,2-DICHLOROETHANE	NA	NA	50 U	50 U	NA							
2-BUTANONE	NA	NA	1000 U	1000 U	NA							
BENZENE CARRON TETRACHI ORIDE	NA NA	NA NA	50 U	50 U	NA NA							
CARBON TETRACHLORIDE CHLOROBENZENE	NA NA	NA NA	50 U 50 U	50 U 50 U	NA NA							
CHLOROBENZENE	NA NA	NA NA	50 U	50 U	NA NA							
TETRACHLOROETHANE	NA NA	NA NA	50 U	50 U	NA NA	NA NA	NA NA	NA NA				
TRICHLOROETHENE	NA	NA	50 U	50 U	NA	NA NA	NA	NA	NA NA	NA	NA	NA
VOLATILES (MG/KG)												
1,1,1,2-TETRACHLOROETHANE	NA											
1,1,1-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
1,1,2,2-TETRACHLOROETHANE	NA NA											
1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE	NA NA											
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	NA NA											
1,2,3-TRICHLOROPROPANE	NA NA											
1,2-DIBROMO-3-CHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMOETHANE	NA											
1,2-DICHLOROETHANE	NA											
1,2-DICHLOROPROPANE	NA											
2-BUTANONE	NA											
2-HEXANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA											
4-METHYL-2-PENTANONE ACETONE	NA NA											
ACETONIE	NA NA											
ACROLEIN	NA NA	NA	NA NA	NA								
ACRYLONITRILE	NA											
BENZENE	NA											
BROMODICHLOROMETHANE	NA											
BROMOFORM	NA											
BROMOMETHANE	NA NA											
CARBON DISULFIDE CARBON TETRACHLORIDE	NA NA											
CHLOROBENZENE	NA NA											
CHLORODIBROMOMETHANE	NA NA	NA.	NA NA	NA NA								
CHLOROETHANE	NA											
CHLOROFORM	NA											
CHLOROMETHANE	NA											
CHLOROPRENE	NA											
CIS-1,2-DICHLOROETHENE	NA NA											
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	NA NA											
DICHLORODIFLUOROMETHANE	NA NA											
ETHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA
ISOBUTANOL	NA											
METHACRYLONITRILE	NA											
METHYL IODIDE	NA											
METHYL METHACRYLATE	NA NA											
METHYLENE CHLORIDE	NA NA											
PROPIONITRILE STYRENE	NA NA											
TETRACHLOROETHENE	NA NA											
TOLUENE	NA NA											
TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
TRANS-1,3-DICHLOROPROPENE	NA											
TRANS-1,4-DICHLORO-2-BUTENE	NA											
TRICHLOROETHENE	NA											
TRICHLOROFLUOROMETHANE	NA	NA	NA NA	NA								
VINYL ACETATE	NA NA											
VINYL CHLORIDE	NA											

LOCATION	23/00-001	23/00-002	23/00-003	23/00-004	23/00-005	23/00-006	23/00-007	23/00-008	23/00-009	23/00-010	23/00-011	23/00-013
SAMPLE ID	23/00-001	23/00-002	23/00-003	23/00-004	23/00-005	23/00-006	23/00-007	23/00-008	23/00-009	23/00-010	23/00-011	23/00-013
SAMPLE DATE	19950718	19950718	19951116	19951116	19960222	19960222	19960222	19960222	19960222	19960222	19960222	19960222
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO SO	SO	SO SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
VOLATILES (UG/KG)	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
1,1,1,2-TETRACHLOROETHANE	6.5 U	7.4 U	NA	NA	24 U	25 U	23 U	23 U	24 U	25 U	25 U	21 U
1,1,1-TRICHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
1,1,2,2-TETRACHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
1,1,2-TRICHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
1,1-DICHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
1,1-DICHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
1,2,3-TRICHLOROPROPANE	6.5 U	7.4 U	NA NA	NA NA	24 U	25 U	23 U	23 U	24 U	25 U	25 U	21 U
1,2-DIBROMO-3-CHLOROPROPANE	6.5 U	7.4 U	NA NA	NA NA	59 U	63 U	57 U	58 U	59 U	62 U	63 U	52 U
1,2-DIBROMOETHANE	6.5 U	7.4 U	NA NA	NA NA	18 U	19 U	17 U	17 U	18 U	19 U	19 U	16 U
1,2-DICHLOROETHANE	3.5 U	7.4 U	NA NA	NA NA	12 U	13 U	17 U	17 U	10 U	19 U	13 U	10 U
1,2-DICHLOROPROPANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
1,4-DIOXANE	1000 U	1000 U	NA NA	NA NA	60000 U	65000 U	59000 U	59000 U	60000 U	63000 U	65000 U	53000 U
2.4.5-TRICHLOROPHENOL	NA	NA	NA NA	NA NA	5.9 JBP	3.7 JBP	1.4 JBP	1.9 JBP	29 U	2.3 JBP	9.5 JBP	2.5 JBP
	130 U	340 U	NA NA	NA NA	5.9 JBP 12 U	3.7 JBP 13 U	1.4 JBP 11 U	1.9 JBP 12 U	12 U	2.3 JBP 12 U	9.5 JBP 13 U	2.5 JBP 10 U
2-BUTANONE		340 U 74 U	NA NA	NA NA		13 U			12 U		13 U	10 U
2-HEXANONE 3-CHLOROPROPENE	65 U 5 U	74 U 5 U	NA NA	NA NA	12 U 18 U	13 U 19 U	11 U 17 U	12 U 17 U	12 U 18 U	12 U 19 U	13 U 19 U	10 U 16 U
4-METHYL-2-PENTANONE	65 U	74 U	NA NA	NA NA	18 U	19 U	17 U	17 U	18 U	19 U	13 U	10 U
ACETONE	130 U	150 U	NA NA	NA NA	20 BN	13 U	11 U		12 U	12 U		10 U
		7.4 U	NA NA	NA NA	20 BN 240 U	250 U	230 U	12 U 230 U	240 U	250 U	13 U 250 U	210 U
ACETONITRILE	6.5 U											
ACROLEIN	NA C.F.II	NA	NA NA	NA	270 U	290 U	260 U	270 U	270 U	280 U	290 U	240 U
BENZENE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
BROMODICHLOROMETHANE	6.5 U	7.4 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
BROMOFORM	6.5 U	7.4 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
BROMOMETHANE	13 U	15 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CARBON DISULFIDE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CARBON TETRACHLORIDE	6.5 U	7.4 U		NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CHLOROBENZENE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CHLORODIBROMOMETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CHLOROETHANE	13 U	15 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CHLOROFORM	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CHLOROMETHANE	13 U	15 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
CHLOROPRENE	5 U	5 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA 12.11	NA
CIS-1,3-DICHLOROPROPENE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
DIBROMOMETHANE	6.5 U	7.4 U	NA NA	NA NA	24 U	25 U	23 U	23 U	24 U	25 U	25 U	21 U
DICHLORODIFLUOROMETHANE	6.5 U	7.4 U	NA NA	NA NA	24 U	25 U	23 U	23 U	24 U	25 U	25 U	21 U
ETHYL METHACRYLATE	6.5 U	7.4 U	NA NA	NA	NA 12.11	NA 12.11	NA	NA	NA 12.11	NA 12.11	NA	NA 10.11
ETHYLBENZENE	6.5 U	7.4 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
ISOBUTANOL	NA 11 II	NA 12 II	NA NA	NA NA	15000 U	16000 U	15000 U	15000 U	15000 U	16000 U	16000 U	14000 U
ISODRIN M. D. XVI ENEC	11 U	12 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
M+P-XYLENES	6.5 U	7.4 U	NA NA	NA NA	NA 24 II	NA 25 II	NA 22 II	NA 22.11	NA 24 II	NA 25 II	NA 25 II	NA 21 II
METHACRYLONITRILE	6.5 U 6.5 U	7.4 U 7.4 U	NA NA	NA NA	24 U 12 U	25 U	23 U	23 U 12 U	24 U	25 U 12 U	25 U	21 U
METHYL IODIDE						13 U	11 U		12 U		13 U	10 U
METHYL METHACRYLATE	6.5 U	7.4 U	NA NA	NA NA	59 U	63 U	57 U	57 U	59 U	62 U	63 U	52 U
METHYLENE CHLORIDE	22	41		NA	11 JB	18 B	27 B	13	11 JB	12 B	11 JB	12 B
O-XYLENE	6.5 U	7.4 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLORONITROBENZENE	8.4 U	9.7 U	NA NA	NA	NA COO LL	NA TEO LI	NA COO LL	NA 200 H	NA COO III	NA 720 H	NA TEO LI	NA C10 III
PROPIONITRILE	6.5 U	7.4 U	NA NA	NA	690 U	750 U	680 U	890 U	690 U	730 U	750 U	610 U
STYRENE TETRACIII OROFTHANIE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
TETRACHLOROETHANE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
TOLUENE	6.5 U	7.4 U	NA NA	NA NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
TOTAL XYLENES	NA C.F.II	NA	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
TRANS-1,2-DICHLOROETHENE	6.5 U	7.4 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
TRANS-1,3-DICHLOROPROPENE	6.5 U	7.4 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U
TRANS-1,4-DICHLORO-2-BUTENE	6.5 U	7.4 U	NA NA	NA	18 U	19 U	17 U	17 U	18 U	19 U	19 U	16 U
TRICHLOROETHENE	6.5 U	7.4 U	NA NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	22
TRICHLOROFLUOROMETHANE	6.5 U	7.4 U	NA NA	NA	24 U	25 U	23 U	23 U	24 U	25 U	25 U	21 U
VINYL ACETATE	6.5 U	7.4 U	NA	NA	24 U	25 U	23 U	23 U	24 U	25 U	25 U	21 U
VINYL CHLORIDE	13 U	15 U	NA	NA	12 U	13 U	11 U	12 U	12 U	12 U	13 U	10 U

LOCATION		235	B001			235	B002	_			23SB003		
SAMPLE ID	23SS001-0002	23SS001-0002-D	23SB001-1012	23SB001-1012-D	23SS002-0002	23SB0020204	23SB0020406	23SB002-1012	23SS003-0002	23SS003-0002-D	23SB0030204	23SB0030406	23SB003-0810
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20140326	20140326	20121007	20121007	20121007	20140326	20140326	20121007
SAMPLE CODE	NORMAL	DUP	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL
		SO											
MATRIX	SO.		SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SB	SS	SB	SB	SB	SS	SS	SB	SB	SB
TOP DEPTH	0	0	10	10	0	2	4	10	0	0	2	4	8
BOTTOM DEPTH	2	2	12	12	2	4	6	12	2	2	4	6	10
DIOXINS/FURANS (UG/KG)		_			_		Ů.		_	_	1		
1,2,3,4,6,7,8,9-OCDD	NA	NA	NIA	NA	NA	NA	NA	NIA	NA	NA	NA	NA	NA
, , , , , , , , , , , , , , , , , , , ,			NA			NA		NA			NA		
1,2,3,4,6,7,8,9-OCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.2.3.4.7.8.9-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		NA NA											
2,3,4,6,7,8-HXCDF	NA NA		NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
2,3,4,7,8-PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
TEO WHO-2007 - HALFND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDF	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA
TOTAL PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
TOTAL TCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HERBICIDES (UG/KG)													
2.4.5-T	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2.4-D	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	IVA	INA	INA	INA	INA	NA NA	INA	INA	INA	NA NA	INA	INA	I NA
METALS (MG/KG)													
ANTIMONY	2.44 U	2.42 U	2.38 U	2.39 U	2.35 U	NA	NA	2.24 UJ	0.875 U	2.11 U	NA	NA	2.47 U
ARSENIC	8.07	7.58	9.5	8.01	7.16	NA	NA	9.4 J	5.64	5.94	NA	NA	12.8
BARIUM	67.4	84.3	88.4	84.5	72	NA	NA	41.9	29.1	41.2	NA	NA	77.5
BERYLLIUM	0.46 J	0.485 J	0.593 J	0.58 J	0.455 J	NA	NA	0.494 J	0.21 J	0.321 J	NA	NA	0.605 J
CADMIUM	0.61 U	1.88	0.595 U	0.597 U	0.757 J	NA	NA NA	0.559 U	0.219 U	0.528 U	NA	NA	0.619 U

CHROMIUM	29.5 J	116 J	19	17.8	32.5	NA	NA	16.9 J	11.9 J	24 J	NA NA	NA	29.8
COBALT	7.38	9.03	7.63	9.84	7.49	NA	NA	2.46 J	3.48	4.14	NA	NA	5.69
COPPER	39.8	60.1	14.6	12.6	30.1	NA	NA	10.9	6.41 J	12.6 J	NA	NA	20.7
LEAD	125 J	73.2 J	18.3	13	61 J	NA	NA	11.8	8.54 J	14.4 J	NA	NA	14.7
MERCURY	0.692 J	2.37 J	0.0475	0.0456	1.6 J	NA	NA	0.0642	0.015 J	0.0625	NA	NA	0.0384 J
NICKEL	13.8 J	22.9 J	11.2	12.3	11	NA NA	NA NA	5.15	10.7	11.3	NA NA	NA NA	16.8
SELENIUM	1.53 U	1.51 U	1.49 U	1.49 U	1.47 U	NA	NA	1.4 U	0.656 U	1.32 U	NA NA	NA NA	1.55 U
SILVER	0.61 U	0.606 U	0.595 U	0.597 U	2.21 J	NA	NA	0.559 U	0.219 U	0.528 U	NA	NA	0.619 U
THALLIUM	1.22 U	1.21 U	1.19 U	1.19 U	1.18 U	NA	NA	1.12 U	0.438 U	1.06 U	NA	NA	1.24 U
VANADIUM	19.5	31.2	33.1	32.3	28.2	NA	NA	22.4	13.8	13.8	NA	NA	51.2
ZINC	127 J	485 J	34.4	38.1	83.2 J	NA	NA	12.1	38.4	41.2 J	NA	NA	54
METALS (UG/KG)													
ANTIMONY	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
BERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
COPPER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LITHIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NICKEL	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THALLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VANADIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZINC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA
MISCELLANEOUS PARAMETERS (%		193	197	1 10 1	1473	1971	11/1	19/1	1771	1973	17/1	1773	197
		N/A	NIA	NIA	N/A	NIA	N/A	N/A	N/A	NA	NA	NA	NA.
ACTINOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
AMOSITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHOPHYLLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ASBESTOS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSOTILE	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
CROCIDOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TREMOLITE	NA	NA	ı NA	I INA	ı NA	I NA	I NA	I NA	I IVA	INA	NA	INA NA	INA

COCATION COCATION	23SB003 23SB0030204 20140326 NORMAL SO NORMAL SB 2 4	23SB0030406 20140326 NORMAL SO NORMAL SB 4	23SB003-0810 20121007 NORMAL SO NORMAL SB
SAMPLE CODE NORMAL DUP SO SO SO SO SO SO SO S	NORMAL SO NORMAL SB 2 4	NORMAL SO NORMAL	NORMAL SO NORMAL
MATRIX SO	SO NORMAL SB 2 4	SO NORMAL	SO NORMAL
SAMPLE TYPE	NORMAL SB 2 4	NORMAL	NORMAL
TOP DEPTH	2 4	SB 4	CD
BOTTOM DEPTH 2 2 12 12 2 4 6 12 2 2 2 MISCELLANEOUS PARAMETERS (F)	4	4	
MISCELLANEOUS PARAMETERS (F) FLASHPOINT NA	NA NA		8 10
FLASHPOINT NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	0	10
		NA	NA
SULFAIE	N/A	N/A	N/A
MISCELLANEOUS PARAMETERS (S.U.)	NA	NA	NA
PH 7.77 8.29 NA NA 7.98 NA NA NA 8.74 8.59	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/I			
CYANIDE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
ORGANOPHOSPHOROUS PESTICIDES	IVA	INA	INA
DIMETHOATE NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
DISULFOTON NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
ETHYL PARATHION NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
METHYL PARATHION NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA	NA NA
PHORATE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
PRONAMIDE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
PCBS (MG/KG)	IVA	INA	INA
AROCLOR-1016 0.0193 UJ 0.187 U NA NA 0.0371 UJ NA NA NA 0.00182 UJ 0.00179 UJ	NA	NA	NA
AROCLOR-1221 0.0193 UJ 0.187 U NA NA 0.0371 UJ NA NA NA 0.0182 UJ 0.00179 UJ	NA NA	NA NA	NA NA
AROCLOR-1232 0.0193 UJ 0.187 U NA NA 0.0371 UJ NA NA NA 0.0182 UJ 0.00179 UJ AROCLOR-1242 0.0193 UJ 0.187 U NA NA 0.0371 UJ NA NA NA 0.0182 UJ 0.00179 UJ 0.00179 UJ	NA NA	NA NA	NA NA
AROCLOR-1248 0.0193 UJ 0.187 U NA NA NA NA 0.00182 UJ 0.00179 UJ	NA NA	NA NA	NA NA
AROCLOR-1254 0.191 J 3.29 J NA NA 0.0371 UJ NA NA NA NA 0.00182 UJ 0.00179 UJ	NA	NA	NA
AROCLOR-1260 0.186 J 0.187 UJ NA NA NA NA 0.0371 UJ NA NA NA 0.00746 J 0.00537 J	NA	NA	NA
PESTICIDES/PCBS (UG/KG) I,1-DICHLOROETHENE NA td> <td>NA</td> <td>NA</td>	NA	NA	NA
44°-DDD NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA NA	NA NA
4,4'-DDE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
4,4'-DDT NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
ALDRIN NA ""><td>NA NA</td><td>NA NA</td><td>NA NA</td></th<>	NA NA	NA NA	NA NA
ALPHA-CHLORDANE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
AROCLOR-1016 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA	NA
AROCLOR-1221 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
AROCLOR-1242 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
AROCLOR-1248 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
AROCLOR-1254 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA
AROCLOR-1260 NA	NA NA	NA NA	NA NA
CHLORDANE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA NA	NA
DELTA-BHC NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
DIELDRIN NA <	NA NA	NA NA	NA NA
ENDOSULFAN II NA IVA IVA IVA IVA IVA IVA IVA IVA IVA IV	NA NA	NA NA	NA NA
ENDOSULFAN SULFATE NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
ENDRIN NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
ENDRIN ALDEHYDE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE) NA NA NA NA NA NA NA NA NA NA NA	NA	NA NA	NA NA
GAMMA-CHLORDANE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
HEPTACHLOR NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA
METHOXYCHLOR NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
PHORATE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA	NA NA	NA NA
TOXAPHENE NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	NA	NA
DRO (C08-C28) 35.7 J 75.4 J 2220 1850 98.9 J NA NA 7.56 U 25.9 43.7	NA	NA	7.96 U
DRO (C08-C34) 71.4 J 156 J 3490 3010 148 J NA NA 8.53 J 64.2 102	NA	NA	10.6 J
GASOLINE RANGE ORGANICS 5.29 U 4.43 U 4.75 J 4.36 U 4.76 U NA NA 4.55 U 4.72 U 6.07 J	NA	NA	4.75 U
POLYCYCLIC AROMATIC HYDROCARE 1-METHYLNAPHTHALENE NA NA NA NA NA NA NA NA NA NA NA NA NA	0.037 U	0.004 U	NA
2-METHYLNAPHTHALENE 0.0187 U 0.0195 J 0.0185 U 0.0184 U 0.0375 U 0.046 U 0.0041 U 0.00383 U 0.0217 J 0.0188 J	0.037 U	0.004 U	0.00391 U
ACENAPHTHENE 0.0187 U 0.0187 U 0.0185 U 0.0184 U 0.0375 U 0.046 U 0.0041 U 0.00383 U 0.0181 J 0.0179 U	0.037 U	0.004 U	0.00391 U
ACENAPHTHYLENE 0.0187 U 0.0187 U 0.0546 0.0184 U 0.442 0.046 U 0.0041 U 0.00383 U 0.384 J 0.079 J ANTHRACENE 0.0187 U 0.021 J 0.0185 U 0.0184 U 0.277 J 0.046 U 0.0041 U 0.00383 U 1.03 J 0.126 J	0.037 U	0.004 U 0.004 U	0.0105
ANTHRACENE 0.0187 U 0.021 J 0.0185 U 0.0184 U 0.277 J 0.046 U 0.001 U 0.00383 U 1.03 J 0.126 J BAP EQUIVALENT-HALFND 0.1067887 NA 0.0185 U NA 3.81559 0.08876 0.0081566 0.00383 U 4.60075 NA	0.037 U 0.51836	0.004 U 0.004 U	0.00427 J 0.0852781
BAP EQUIVALENT-POS 0.0974387 NA 0.0185 U NA 3.81559 0.06116 0.0059016 0.00383 U 4.60075 NA	0.51836	0.004 U	0.0852781
BENZO(A)ANTHRACENE 0.0463 J 0.0799 J 0.0185 U 0.0184 U 1.37 0.046 U 0.005 J 0.00383 U 3.22 J 0.706 J	0.24	0.004 U	0.0299
BENZO(A)PYRENE 0.0757 0.103 0.0185 U 0.0184 UJ 2.51 0.051 J 0.0045 J 0.00383 U 3.03 J 0.858 J	0.33	0.004 U	0.0565
BENZO(B)FLUORANTHENE 0.0963 0.129 0.0185 U 0.0184 UJ 2.9 0.098 0.0087 0.00383 U 3.62 J 1.04 J BENZO(G,H,I)PERYLENE 0.0844 0.104 0.043 0.0184 UJ 2.56 0.046 J 0.0041 U 0.00383 U 1.93 J 0.761 J	0.66 0.26	0.004 U 0.004 U	0.0643 0.0578
BENZO(K)FLUORANTHENE 0.0574 J 0.101 J 0.0185 U 0.0184 UJ 1.99 0.031 J 0.0025 J 0.00383 U 3 J 0.813 J	0.2	0.004 U	0.0445
CHRYSENE 0.0647 J 0.115 J 0.0185 U 0.0184 U 1.69 0.05 J 0.0066 J 0.00383 U 3.75 J 0.876 J	0.36	0.004 U	0.0431

	т								Í .				
LOCATION		23SB			1		B002	1			23SB003	1	,
SAMPLE ID	23SS001-0002	23SS001-0002-D	23SB001-1012	23SB001-1012-D	23SS002-0002	23SB0020204	23SB0020406	23SB002-1012	23SS003-0002	23SS003-0002-D	23SB0030204	23SB0030406	23SB003-0810
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20140326	20140326	20121007	20121007	20121007	20140326	20140326	20121007
SAMPLE CODE	NORMAL	DUP	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL
MATRIX	so	so	so	so	so	so	so	so	SO	so	so	so	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SB	SS	SB	SB	SB	SS	SS	SB	SB	SB
TOP DEPTH	0	0	10	10	0	2	4	10	0	0	2	4	8
BOTTOM DEPTH	2	2	12	12	2	4	6	12	2	2	4	6	10
DIBENZO(A,H)ANTHRACENE	0.0187 U	0.028 J	0.0185 U	0.0184 UJ	0.657	0.046 U	0.0041 U	0.00383 U	0.675 J	0.246 J	0.08	0.004 U	0.0142
FLUORANTHENE	0.0577 J	0.12 J	0.0185 U	0.0184 U	1.22	0.046 U	0.0053 J	0.00383 U	3.85 J	1.04 J	0.28	0.004 U	0.041
FLUORENE	0.0187 U	0.0187 U	0.0185 U	0.0184 U	0.0375 U	0.046 U	0.0041 U	0.00383 U	0.084	0.0211 J	0.037 U	0.004 U	0.00391 U
INDENO(1,2,3-CD)PYRENE	0.0684	0.0845	0.0185 U	0.0184 UJ	2	0.046 UJ	0.0041 U	0.00383 U	1.78 J	0.664 J	0.16 J	0.004 U	0.0467
NAPHTHALENE	0.0187 U	0.0187 U	0.0185 U	0.0184 U	0.0382 J	0.046 U	0.0041 U	0.00383 U	0.0363	0.03 J	0.037 U	0.004 U	0.00391 U
PHENANTHRENE	0.0324 J	0.0573	0.0185 U	0.0184 U	0.203 J	0.046 U	0.0041 U	0.00383 U	0.356 J	0.174 J	0.055 J	0.004 U	0.00944
PYRENE	0.0656 J	0.119 J	0.0597	0.0184 U	1.33	0.075 J	0.0056 J	0.00383 U	4.3 1	1.05 J	0.49 J	0.001 U	0.0467
SEMIVOLATILES (UG/KG)	0.0050 5	1 0.119 5	0.0337	0.010+ 0	1.55	0.073 3	0.0030 3	0.00505 0	4.5 5	1.05 5	0.49 3	0.004 0	0.0407
1.2.4.5-TETRACHLOROBENZENE	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
, ,													
1,2-DICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3,5-TRINITROBENZENE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-DINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-NAPHTHOQUINONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-PHENYLENEDIAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6-TETRACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
2,4,6-TRICHLOROPHENOL	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DINITROTOLUENE	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
2,6-DICHLOROPHENOL	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-ACETYLAMINOFLUORENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-CHLORONAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-CHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROPHENOL	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
2-PICOLINE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
3,3'-DICHLOROBENZIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-DIMETHYLBENZIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-METHYLCHOLANTHRENE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLPHENOL	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-AMINOBIPHENYL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-BROMOPHENYL PHENYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLORO-3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROPHENYL PHENYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYLPHENOL	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-NITROANILINE	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
4-NITROPHENOL	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
4-NITROQUINOLINE-1-OXIDE	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
5-NITRO-O-TOLUIDINE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A,A-DIMETHYLPHENETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACENAPHT HENE ACENAPHTHYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETOPHENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANILINE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARAMITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(K)FLUORANTHENE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZYL ALCOHOL	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BIS(2-CHLOROETHOXY)METHANE	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		NA NA		NA NA		NA NA		NA NA					
BUTYL BENZYL PHTHALATE	NA NA		NA NA		NA NA		NA NA		NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZILATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSENE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIALLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION SAMPLE ID		2361	3001			2351	B002				23SB003		
JAI'IF LE IU	23SS001-0002	23SS001-0002-D	23SB001-1012	23SB001-1012-D	23SS002-0002	23SB0020204	23SB0020406	23SB002-1012	23SS003-0002	23SS003-0002-D	23SB003 23SB0030204	23SB0030406	23SB003-0810
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20140326	20140326	20121007	20121007	20121007	20140326	20140326	20121007
SAMPLE CODE	NORMAL	DUP	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO.	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX TOP DEPTH	SS 0	SS 0	SB 10	SB 10	SS 0	SB 2	SB 4	SB 10	SS 0	SS 0	SB 2	SB	SB 8
BOTTOM DEPTH	2	2	10	12	2	4	6	12	2	2	4	6	10
DIBENZO(A,H)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBENZOFURAN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIMETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-BUTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIPHENYLAMINE ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORENE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROBUTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROCYCLOPENTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOPHORONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOSAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHANE SULFONATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIETHYLAMINE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
N-NITROSODIMETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-BUTYLAMINE N-NITROSO-DI-N-PROPYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMORPHOLINE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
N-NITROSOPIPERIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPYRROLIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROBENZENE PENTACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENACETIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENANTHRENE	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
PHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PRONAMIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PYRIDINE	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
SAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THIONAZIN TCLP HERBICIDES (UG/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2.4.5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP METALS (UG/L)													
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP MISCELLANEOUS (UG/L)													
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L)													
ALPHA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE) GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THE FACILUS LEVANAE				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR	NA	NA	NA	I IVA	IVA							INA	

LOCATION		235	B001			2351	B002		1		23SB003		
SAMPLE ID	23SS001-0002	23SS001-0002-D	23SB001-1012	23SB001-1012-D	23SS002-0002	23SB0020204	23SB0020406	23SB002-1012	23SS003-0002	23SS003-0002-D	23SB0030204	23SB0030406	23SB003-0810
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20140326	20140326	20121007	20121007	20121007	20140326	20140326	20121007
SAMPLE CODE	NORMAL	DUP	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	so	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SB	SS	SB	SB	SB	SS	SS	SB	SB	SB
TOP DEPTH	0	0	10	10	0	2	4	10	0	0	2	4	8
BOTTOM DEPTH	2	2	12	12	2	4	6	12	2	2	4	6	10
TCLP VOLATILES (UG/L)													
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VOLATILES (MG/KG)	IVA	INA	INA	INA	INA	IVA	INA	INA	INA	INA I	IVA	INA	INA
1.1.1.2-TETRACHLOROETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
1,1,1-TRICHLOROETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0024 U
1,1,2,2-TETRACHLOROETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0024 U
1.1.2-TRICHLOROETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0024 U
1,1-DICHLOROETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0024 U
1,1-DICHLOROETHENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0024 U
1,2,3-TRICHLOROPROPANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
1,2-DIBROMO-3-CHLOROPROPANE	0.00691 UJ	0.222 UJ	0.00425 U	0.218 UJ	0.00481 U	NA	NA NA	0.227 UJ	0.00488 U	0.247 UJ	NA	NA	0.0048 U
1,2-DIBROMOETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
1,2-DICHLOROETHANE	0.00346 UJ	0.111 UJ	0.00212 UJ	0.109 UJ	0.00241 UJ	NA	NA	0.114 UJ	0.00244 UJ	0.124 UJ	NA	NA	0.0024 UJ
1,2-DICHLOROPROPANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
2-BUTANONE	0.0405 J	0.222 UJ	0.0043 J	0.218 UJ	0.00714 J	NA	NA	0.227 UJ	0.00532 J	0.247 UJ	NA	NA	0.00553 J
2-HEXANONE	0.00691 UJ	0.222 UJ	0.00425 U	0.218 UJ	0.00481 U	NA	NA	0.227 UJ	0.00488 U	0.247 UJ	NA	NA	0.0048 U
3-CHLOROPROPENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
4-METHYL-2-PENTANONE	0.00691 UJ	0.222 UJ	0.00425 U	0.218 UJ	0.00481 U	NA	NA	0.227 UJ	0.00488 U	0.247 UJ	NA	NA	0.0048 U
ACETONE	0.234 J	0.443 UJ	0.024	0.436 UJ	0.0601	NA	NA	0.455 UJ	0.0714	0.495 UJ	NA	NA	0.101
ACETONITRILE	0.0346 UR	1.11 UR	0.0212 UR	1.09 UR	0.0241 UR	NA	NA	1.14 UR	0.0244 UR	1.24 UR	NA	NA	0.024 UR
ACROLEIN	0.0138 UR	0.443 UR	0.0085 UR	0.436 UR	0.00963 UR	NA	NA	0.455 UR	0.00977 UR	0.495 UR	NA	NA	0.00961 UR
ACRYLONITRILE	0.0138 UJ	0.443 UJ	0.0085 U	0.436 UJ	0.00963 U	NA NA	NA NA	0.455 UJ	0.00977 U	0.495 UJ	NA	NA NA	0.00961 U
BENZENE	0.0018 J 0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA NA	NA NA	0.114 UJ	0.00167 J	0.124 UJ	NA NA	NA NA	0.0024 U
BROMODICHLOROMETHANE BROMOFORM	0.00346 UJ	0.111 UJ 0.111 UJ	0.00212 U 0.00212 U	0.109 UJ 0.109 UJ	0.00241 U 0.00241 U	NA NA	NA NA	0.114 UJ 0.114 UJ	0.00244 U 0.00244 U	0.124 UJ 0.124 UJ	NA NA	NA NA	0.0024 U 0.0024 U
BROMOMETHANE	0.00346 UJ	0.111 UJ 0.222 UJ	0.00212 U 0.00425 UJ	0.109 UJ	0.00241 UJ	NA NA	NA NA	0.114 UJ 0.227 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0024 UJ
CARBON DISULFIDE	0.00888 J	0.222 03 0.111 UJ	0.00423 03 0.00113 J	0.109 UJ	0.00461 UJ 0.00414 J	NA NA	NA NA	0.114 UJ	0.00586	0.124 UJ	NA NA	NA NA	0.0048 U
CARBON TETRACHLORIDE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.001113 0.00241 U	NA NA	NA NA	0.114 UJ	0.00366 0.00244 U	0.124 UJ	NA NA	NA NA	0.0021 U
CHLOROBENZENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0021 U
CHLORODIBROMOMETHANE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
CHLOROETHANE	0.00691 UJ	0.222 UJ	0.00425 UJ	0.218 UJ	0.00481 UJ	NA	NA	0.227 UJ	0.00488 UJ	0.247 UJ	NA	NA	0.0048 UJ
CHLOROFORM	0.00514 J	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
CHLOROMETHANE	0.00691 UJ	0.222 UJ	0.00425 UJ	0.218 UJ	0.00481 UJ	NA	NA	0.227 UJ	0.00488 UJ	0.247 UJ	NA	NA	0.0048 UJ
CHLOROPRENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
CIS-1,2-DICHLOROETHENE	0.00346 UJ	0.111 UJ	0.0012 J	0.109 UJ	0.00241 U	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
CIS-1,3-DICHLOROPROPENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
DIBROMOMETHANE	0.00346 UJ	0.111 UJ	0.00212 UJ	0.109 UJ	0.00241 UJ	NA	NA	0.114 UJ	0.00244 UJ	0.124 UJ	NA	NA	0.0024 UJ
DICHLORODIFLUOROMETHANE	0.00691 UJ	0.222 UJ	0.00425 UJ	0.218 UJ	0.00481 UJ	NA	NA	0.227 UJ	0.00488 UJ	0.247 UJ	NA	NA	0.0048 UJ
ETHYL METHACRYLATE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 U	NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
ETHYLBENZENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA NA	NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA	0.0024 U
ISOBUTANOL	0.0553 UJ	1.77 UJ	0.034 U	1.74 UJ	0.0385 U	NA	NA	1.82 UJ	0.0391 U	1.98 UJ	NA	NA	0.0384 U
METHACRYLONITRILE	0.0346 UJ	1.11 UJ	0.0212 U	1.09 UJ	0.0241 U	NA NA	NA NA	1.14 UJ	0.0244 U	1.24 UJ	NA	NA NA	0.024 U
METHYL IODIDE	0.0138 UJ	0.443 UJ	0.0085 U	0.436 UJ	0.00963 U	NA NA	NA NA	0.455 UJ	0.00977 U	0.495 UJ	NA	NA NA	0.00961 U
METHYL METHACRYLATE	0.00346 UJ	0.111 UJ	0.00212 UJ	0.109 UJ	0.00241 UJ	NA NA	NA NA	0.114 UJ	0.00244 UJ	0.124 UJ	NA NA	NA NA	0.0024 UJ
METHYLENE CHLORIDE PROPIONITRILE	0.00691 UJ 0.0346 UR	0.137 J 1.11 UR	0.00425 U 0.0212 UR	0.218 UJ 1.09 UR	0.00481 U 0.0241 UR	NA NA	NA NA	0.227 UJ 1.14 UR	0.00279 J 0.0244 UR	1.45 J 1.24 UR	NA NA	NA NA	0.0048 U 0.024 UR
STYRENE	0.0346 UK 0.00346 UJ	0.111 UK	0.0212 UK 0.00212 U	0.109 UJ	0.0241 UK 0.00241 UJ	NA NA	NA NA	0.114 UK	0.0244 UK 0.00244 U	0.124 UK	NA NA	NA NA	0.024 UR 0.0024 U
TETRACHLOROETHENE	0.00346 UJ 0.00539 J	0.111 UJ 0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ 0.00241 UJ	NA NA	NA NA	0.114 UJ 0.114 UJ	0.00244 U 0.00244 U	0.124 UJ 0.124 UJ	NA NA	NA NA	0.0024 U 0.0024 U
TOLUENE	0.00539 J 0.0094 J	0.111 UJ	0.00212 U 0.00378 J	0.109 UJ	0.00241 UJ 0.00131 J	NA NA	NA NA	0.114 UJ	0.00244 U 0.00345 J	0.124 UJ	NA NA	NA NA	0.0024 U 0.00178 J
TOTAL XYLENES	0.0104 UJ	0.333 UJ	0.00378 J 0.00637 U	0.327 UJ	0.00131 J 0.00722 UJ	NA NA	NA NA	0.114 UJ	0.00343 J 0.00732 U	0.124 UJ	NA NA	NA NA	0.00178 J 0.00721 U
TRANS-1,2-DICHLOROETHENE	0.0104 UJ	0.333 03 0.111 UJ	0.00037 U	0.109 UJ	0.00722 UJ	NA NA	NA NA	0.114 UJ	0.00732 U 0.00244 U	0.371 UJ 0.124 UJ	NA NA	NA NA	0.00721 U
TRANS-1,3-DICHLOROPROPENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00211 UJ	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0021 U
TRANS-1,4-DICHLORO-2-BUTENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00211 U	NA NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA NA	NA NA	0.0021 U
TRICHLOROETHENE	0.00346 UJ	0.111 UJ	0.00212 U	0.109 UJ	0.00241 UJ	NA	NA NA	0.114 UJ	0.00244 U	0.124 UJ	NA	NA NA	0.0024 U
TRICHLOROFLUOROMETHANE	0.00691 UJ	0.222 UJ	0.00425 UJ	0.218 UJ	0.00481 UJ	NA	NA NA	0.227 UJ	0.00488 UJ	0.247 UJ	NA	NA	0.0048 UJ
	0.00691 UJ	0.222 UJ	0.00425 U	0.218 UJ	0.00481 UJ	NA	NA	0.227 UJ	0.00488 U	0,247 UJ	NA	NA	0.0048 U
VINYL ACETATE	0.000031 03												

LOCATION		23SI	R001			235	B002				23SB003		
SAMPLE ID	23SS001-0002	23SS001-0002-D	23SB001-1012	23SB001-1012-D	23SS002-0002	23SB0020204	23SB0020406	23SB002-1012	23SS003-0002	23SS003-0002-D	23SB0030204	23SB0030406	23SB003-0810
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20140326	20140326	20121007	20121007	20121007	20140326	20140326	20121007
SAMPLE CODE	NORMAL	DUP	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	so	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SB	SS	SB	SB	SB	SS	SS	SB	SB	SB
TOP DEPTH	0	0	10	10	0	2	4	10	0	0	2	4	8
BOTTOM DEPTH	2	2	12	12	2	4	6	12	2	2	4	6	10
VOLATILES (UG/KG)	-	-		12		1	Ŭ.	12	_	_	-		
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
1,1,2,2-TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
1,1,2-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1.1-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
1,2,3-TRICHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMO-3-CHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMOETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-DIOXANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-BUTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-HEXANONE	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYL-2-PENTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONE	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA				NA NA						
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZENE		• • • • • • • • • • • • • • • • • • • •	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA
BROMODICHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON DISULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
DIBROMOMETHANE	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
ETHYL METHACRYLATE	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
M+P-XYLENES	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-XYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLORONITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PROPIONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
STYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VINYL ACETATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VINTE ACETATE													

LOCATION SAMPLE ID	23S 23SS004-0002	B004 23SB004-0810	23S 23SS005-0002	B005 23SB005-0810	23SE 23SS006-0002	3006 23SB006-0608	23SB007 23SS007-0002	23SB008 23SS008-0002	23SB009 23SS009-0002	23SB010 23SS010-0002	23SB011 23SS011-0002	23SB012 23SS012-0002	23SB013 23SS013-0002	23SB014 23SS014-0002
SAMPLE CODE	20121007 NORMAL	20121007 NORMAL	20121007 NORMAL	20121007 NORMAL	20121007 NORMAL	20121007 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121031 NORMAL
MATRIX SAMPLE TYPE	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL
SUBMATRIX	SS	SB	SS	SB	SS	SB	SS							
TOP DEPTH	0	8	0	8	0	6	0	0	0	0	0	0	0	0
BOTTOM DEPTH	2	10	2	10	2	8	1.8	0.8	1.2	1.6	1.8	2	1.9	0.5
DIOXINS/FURANS (UG/KG)									214	212				
1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDF	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HXCDF	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA
1,2,3,7,8-PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,7,8-PECDF 2,3,7,8-TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD 2,3,7,8-TCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007 - HALFND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HYCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HXCDD TOTAL HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HERBICIDES (UG/KG) 2.4.5-T	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-1 2,4,5-TP (SILVEX)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-D	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA
METALS (MG/KG)														
ANTIMONY	2.28 U	2.24 U	2.29 U	2.32 U	2.29 U	2.57 U	2.75 U	2.54 U	2.82 U	6.72	2.42 U	2.43 U	2.59 U	19.3
ARSENIC BARIUM	6.14 53.3	5.05 48.7	7.77 39.4	5.27 78.8	10.9 85	11.2 80.5	5.13 115	2.5 J 62.9	10.8 84	12.2 85.1	7.69 54.4	2.49 J 62	4.7 103	8.51 58.4
BERYLLIUM	0.583 J	0.352 J	0.572 U	0.436 J	0.587 J	0.494 J	0.612 J	0.389 J	0.603 J	0.429 J	0.509 J	0.429 J	0.791 J	0.605 J
CADMIUM	0.569 U	0.561 U	0.572 U	0.579 U	0.573 U	0.643 U	0.688 U	0.636 U	0.704 U	4.78	0.604 U	0.607 U	0.345 J	1.17 J
CHROMIUM	34.1	21.5	22.9	16.2	24.5	24.3	13.1	9.56	27.4	78.8	19.1	7.31	12.3	19
COBALT	10.3	4.28	2.92 J	4.47	5.25	5.64	8.95	6.96	7.22	8.34	10.4	6.36	8.8	3.5 J
COPPER LEAD	13.9 188	12.7 8.73	9.17 23	10.6 11.2	19.5 26.9	19.9 13.7	8.96 20.5	5.89 13.1	15.6 25.6	177 691	7.15 13.8	5.71 9.98	16.7 345	37.7 4640
MERCURY	0.035 J	0.0265 J	0.0305 J	0.067	0.0464 J	0.0586	0.0566	0.0481	0.0332 U	0.202	0.0356 J	0.0438 J	0.0683	0.0962
NICKEL	18.1	11.3	9.04	9.62	13	13	9.96	6.94	15.2	21.9	9.03	7.98	16.9	10.7
SELENIUM	1.42 U	1.4 U	1.43 U	1.45 U	1.43 U	1.61 U	1.72 U	1.59 U	1.76 U	1.48 U	1.51 U	1.52 U	1.62 U	1.64 U
SILVER	0.569 U	0.561 U	0.572 U	0.579 U	0.573 U	0.643 U	0.688 U	0.636 U	0.704 U	3.86	0.604 U	0.607 U	0.647 U	0.679 J
THALLIUM VANADIUM	1.14 U 17.8	1.12 U 32.1	1.14 U 15.4	1.16 U 12.3	1.15 U 35	1.29 U 40.2	1.38 U 20.1	1.27 U 13.7	1.41 U 38.3	1.18 U 18.7	1.21 U 26.5	1.21 U 11.8	1.29 U 15.6	1.31 U 19.1
ZINC	97.9	27.7	51.9	24.9	47.5	40.2	42.1	30	53.3	366	33.2	24.7	48.4	72.7
METALS (UG/KG)	57.5		21.7	,	.,.5	.5.7	.614		33.3	300	33.2	2117	.0.1	
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM BERYLLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA
LEAD LITHIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NICKEL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA
TIN VANADIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ZINC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MISCELLANEOUS PARAMETERS (%		10.	1973	1973	101	101	1973	177.	101	100	101	10.	1973	101
ACTINOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AMOSITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHOPHYLLITE ASBESTOS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSOTILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CROCIDOLITE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
TREMOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	235	B004	235	3005	23SI	3006	23SB007	23SB008	23SB009	23SB010	23SB011	23SB012	23SB013	23SB014
SAMPLE ID	23SS004-0002	23SB004-0810	23SS005-0002	23SB005-0810	23SS006-0002	23SB006-0608	23SS007-0002	23SS008-0002	23SS009-0002	23SS010-0002	23SS011-0002	23SS012-0002	23SS013-0002	23SS014-0002
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20121007	20121101	20121101	20121101	20121101	20121101	20121101	20121101	20121031
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO													
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SB	SS	SB	SS							
TOP DEPTH	0	8	0	8	0	6	0	0	0	0	0	0	0	0
BOTTOM DEPTH	2	10	2	10	2	8	1.8	0.8	1.2	1.6	1.8	2	1.9	0.5
MISCELLANEOUS PARAMETERS (F)														
FLASHPOINT	NA													
MISCELLANEOUS PARAMETERS (MG/			40.5		44.4		10.1.11	40.5.11	10.1.0	10.0.0	10.11		12.511	12.011
SULFATE	11.3 UJ	NA	10 J	NA	46.6 J	NA	13.1 U	12.5 U	12.1 J	18.3 J	12 U	11.7 U	12.6 U	12.9 U
MISCELLANEOUS PARAMETERS (S.U.)			0.10		0.04	***								
PH ATTECH AND AND AND AND AND AND AND AND AND AND	8.07	NA	8.19	NA	8.91	NA	6.85	5.97	7.76	8.04	5.68	6.87	6.99	7.99
MISCELLANEOUS PARAMETERS (UG/I		N/A	NA	NA	N/A	NIA	N/A	N/A	NIA	N/A	N/A	N/A	N/A	No.
CYANIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SULFIDE ORGANOPHOSPHOROUS PESTICIDES		INA	NA											
DIMETHOATE	NA													
DISULFOTON	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FAMPHUR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHORATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SULFOTEPP	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PCBS (MG/KG)														
AROCLOR-1016	0.00182 UJ	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00214 U	0.00201 UJ	0.00225 UJ	0.00204 UJ	0.00192 U	0.00193 UJ	0.00204 U	0.0397 UJ
AROCLOR-1221	0.00182 UJ	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00214 U	0.00201 UJ	0.00225 UJ	0.00204 UJ	0.00192 U	0.00193 UJ	0.00204 U	0.0397 UJ
AROCLOR-1232	0.00182 UJ	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00214 U	0.00201 UJ	0.00225 UJ	0.00204 UJ	0.00192 U	0.00193 UJ	0.00204 U	0.0397 UJ
AROCLOR-1242	0.00182 UJ	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00214 U	0.00201 UJ	0.00225 UJ	0.00204 UJ	0.00192 U	0.00193 UJ	0.00204 U	0.0397 UJ
AROCLOR-1248	0.00182 UJ	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00214 U	0.00201 UJ	0.00225 UJ	0.00204 UJ	0.00192 U	0.00193 UJ	0.00204 U	0.0397 UJ
AROCLOR-1254	0.00182 UJ	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00214 U	0.00201 UJ	0.00225 UJ	0.0478 J	0.00192 U	0.00193 UJ	0.00293 J	0.00962 J
AROCLOR-1260	0.00928 J	NA	0.00184 UJ	NA	0.00179 UJ	NA	0.00262 J	0.00201 UJ	0.0054 J	0.0759 J	0.00192 U	0.00193 UJ	0.165	0.0317 J
PESTICIDES/PCBS (UG/KG)														
1,1-DICHLOROETHENE	NA													
4,4'-DDD	NA													
4,4'-DDE	NA													
4,4'-DDT	NA													
ALDRIN	NA													
ALPHA-BHC	NA													
ALPHA-CHLORDANE	NA													
AROCLOR-1016	NA													
AROCLOR-1221	NA													
AROCLOR-1232	NA													
AROCLOR-1242	NA													
AROCLOR-1248	NA													
AROCLOR-1254	NA													
AROCLOR-1260	NA													
BETA-BHC	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
CHLORDANE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
DELTA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIELDRIN	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN II	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN SULFATE ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN ENDRIN ALDEHYDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN ALDERTDE ENDRIN KETONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
KEPONE KEPONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHORATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOXAPHENE	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PETROLEUM HYDROCARBONS (MG/K														
DRO (C08-C28)	104	7.66 U	7.49 U	7.53 U	869	108	16 J	17.2	15.7 J	73.8	9.69 J	69	43	25.6
DRO (C08-C34)	147	9.53 J	12 J	11 J	1800	215	30.1	33.6	30.2	130	20.1	88.5	75.6	49.3
GASOLINE RANGE ORGANICS	4.33 U	4.62 U	4.33 U	4.28 U	3.84 U	4.91 U	5.52 U	6.38 U	5.16 U	4.59 U	4.75 U	5.81 U	55.3	21 J
POLYCYCLIC AROMATIC HYDROCARB														
1-METHYLNAPHTHALENE	NA													
2-METHYLNAPHTHALENE	0.0256 J	0.00369 U	0.00367 U	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.00431 U	0.0397 U	0.00384 U	0.00373 U	0.00422 U	0.0407 U
ACENAPHTHENE	0.241	0.00369 U	0.00367 U	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.00431 U	0.0397 U	0.00384 U	0.00373 U	0.00422 U	0.0407 U
ACENAPHTHYLENE	0.0351 J	0.00369 U	0.00432 J	0.00365 U	0.0369 U	0.00554 J	0.00417 U	0.00402 U	0.00431 U	0.0397 U	0.00384 U	0.00373 U	0.00422 U	0.0407 U
ANTHRACENE	0.686	0.00369 U	0.00367 U	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.00431 U	0.0439 J	0.00384 U	0.00373 U	0.00422 U	0.0407 U
BAP EQUIVALENT-HALFND	2.19053	0.00369 U	0.0407065	0.00365 U	0.046183	0.0055163	0.0123396	0.0055538	0.0458075	0.411404	0.0044405	0.0057777	0.0105551	0.185334
BAP EQUIVALENT-POS	2.19053	0.00369 U	0.0407065	0.00365 U	0.00539	0.0009416	0.010044	0.0013328	0.0458075	0.411404	5.31E-06	0.0018425	0.0063351	0.164984
BENZO(A)ANTHRACENE	1.61	0.00369 U	0.0155	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.0156	0.164	0.00384 U	0.00505 J	0.0206	0.0774 J
BENZO(A)PYRENE	1.45	0.00369 U	0.0273	0.00365 U	0.0369 U	0.00414 U	0.00825 J	0.00402 U	0.0251	0.228	0.00384 U	0.00373 U	0.00422 U	0.129
BENZO(B)FLUORANTHENE	1.47	0.00369 U	0.0319	0.00365 U	0.0369 U	0.00414 U	0.0123	0.00775 J	0.0299	0.285	0.00384 U	0.0133	0.0249	0.149
BENZO(G,H,I)PERYLENE	0.901	0.00369 U	0.0207	0.00365 U	0.181	0.018	0.00568 J	0.00402 U	0.0308	0.305	0.00384 U	0.00373 U	0.0173	0.183
BENZO(K)FLUORANTHENE	1.2	0.00369 U	0.0211	0.00365 U	0.0369 U	0.00414 U	0.0071 J	0.00499 J	0.0236	0.191	0.00384 U	0.00373 U	0.0206	0.063 J
CHRYSENE	1.63	0.00369 U	0.0255	0.00365 U	0.0369 U	0.00663 J	0.00417 U	0.00694 J	0.0215	0.194	0.00531 J	0.00751	0.0291	0.114

LOCATION	220	D004	220	DOOF	220	2006	2200007	2200000	2200000	2200040	2200044	2250042	2200042	220004.4
LOCATION		B004		B005		B006	23SB007	23SB008	23SB009	23SB010	23SB011	23SB012	23SB013	23SB014
SAMPLE ID	23SS004-0002	23SB004-0810	23SS005-0002	23SB005-0810	23SS006-0002	23SB006-0608	23SS007-0002	23SS008-0002	23SS009-0002	23SS010-0002	23SS011-0002	23SS012-0002	23SS013-0002	23SS014-0002
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20121007	20121101	20121101	20121101	20121101	20121101	20121101	20121101	20121031
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	so	so	so	so										
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SB	SS	SB	SS	SS	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	95	0		0	6	0	0	0	0	0	0	0	0
] ,	10	9	10	0	8	_		•	_	1.0	9	_	•
BOTTOM DEPTH	2 2	10	2	10	2	8	1.8	0.8	1.2	1.6	1.8	2	1.9	0.5
DIBENZO(A,H)ANTHRACENE	0.334	0.00369 U	0.00671 J	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.0132	0.109	0.00384 U	0.00373 U	0.00422 U	0.0407 U
FLUORANTHENE	3.31	0.00369 U	0.0223	0.00365 U	0.0369 U	0.0147	0.0172 J	0.0125 U	0.0263 J	0.297 J	0.0103 U	0.0107 U	0.037 J	0.219 J
FLUORENE	0.262	0.00369 U	0.00367 U	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.00431 U	0.0397 U	0.00384 U	0.00373 U	0.00422 U	0.0407 U
INDENO(1,2,3-CD)PYRENE	0.849	0.00369 U	0.0172	0.00365 U	0.0539 J	0.00935	0.00493 J	0.00501 J	0.027	0.274	0.00384 U	0.00373 U	0.0155	0.126
NAPHTHALENE	0.0495	0.00369 U	0.00367 U	0.00365 U	0.0369 U	0.00414 U	0.00417 U	0.00402 U	0.00431 U	0.0397 U	0.00384 U	0.00373 U	0.00422 U	0.0407 U
PHENANTHRENE	2.32	0.00369 U	0.00644 J	0.00365 U	0.0369 U	0.0158	0.00417 U	0.00606 U	0.0162 U	0.115 J	0.00455 U	0.00541 U	0.015 U	0.086 J
PYRENE	2.62	0.00369 U	0.0235	0.00365 U	0.0496 J	0.0223		0.00878 U	0.0102 U	0.27 J	0.00433 U 0.00771 U	0.00969 U	0.0336 J	0.181 J
	2.02	0.00369 0	0.0233	0.00363 0	0.0496 J	0.0223	0.0146 J	0.00676 0	0.0254 J	0.27 J	0.00771 0	0.00969 0	0.0336 J	0.161 J
SEMIVOLATILES (UG/KG)														
1,2,4,5-TETRACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA	NA	NA	NA										
1,2-DICHLOROBENZENE	NA	NA	NA	NA										
1,3,5-TRINITROBENZENE	NA	NA	NA	NA										
1,3-DICHLOROBENZENE	NA	NA	NA	NA										
1,3-DINITROBENZENE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-NAPHTHOQUINONE													••••	
1,4-PHENYLENEDIAMINE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-NAPHTHYLAMINE	NA	NA	NA	NA										
2,3,4,6-TETRACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA										
2,4,6-TRICHLOROPHENOL	NA	NA	NA	NA										
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2,4-DIMETHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
•	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DINITROPHENOL														
2,4-DINITROTOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,6-DICHLOROPHENOL	NA	NA	NA	NA										
2,6-DINITROTOLUENE	NA	NA	NA	NA										
2-ACETYLAMINOFLUORENE	NA	NA	NA	NA										
2-CHLORONAPHTHALENE	NA	NA	NA	NA										
2-CHLOROPHENOL	NA	NA	NA	NA										
2-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-NAPHTHYLAMINE	NA	NA	NA	NA										
2-NITROANILINE	NA	NA	NA	NA										
2-NITROPHENOL	NA	NA	NA	NA										
2-PICOLINE	NA	NA	NA	NA										
3.3'-DICHLOROBENZIDINE	NA	NA	NA	NA										
3,3'-DIMETHYLBENZIDINE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-METHYLCHOLANTHRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-METHYLPHENOL	NA	NA	NA	NA										
3-NITROANILINE	NA	NA	NA	NA										
4,6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-AMINOBIPHENYL	NA	NA	NA	NA										
4-BROMOPHENYL PHENYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLORO-3-METHYLPHENOL	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROPHENYL PHENYL ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
				NA NA			NA NA			NA NA				
4-METHYLPHENOL	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA
4-NITROANILINE	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
4-NITROPHENOL	NA	NA	NA	NA										
4-NITROQUINOLINE-1-OXIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5-NITRO-O-TOLUIDINE	NA	NA	NA	NA										
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A,A-DIMETHYLPHENETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
ACENAPHTHYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETOPHENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA	NA NA	NA	NA	NA	NA	NA	NA						
ACRYLONITRILE	NA	NA	NA	NA										
ANILINE	NA	NA	NA	NA										
ANTHRACENE	NA	NA	NA	NA										
ARAMITE	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA
BENZO(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(A)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA										
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA										
BENZO(K)FLUORANTHENE	NA	NA	NA	NA										
BENZYL ALCOHOL	NA	NA	NA	NA										
BIS(2-CHLOROETHOXY)METHANE	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROISOPROPYL)ETHER	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BUTYL BENZYL PHTHALATE	NA	NA	NA	NA										
CHLOROBENZILATE	NA	NA	NA	NA										
CHRYSENE	NA	NA	NA	NA										
DIALLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	13/7	11/7	1 11/1	11/1	1 1973	11/7	13/7	1 1973	1 17/3	11/7	11/7	13/7	11/7	11/7

LOCATION	2351	R004	23SE	2005	236	B006	23SB007	23SB008	23SB009	23SB010	23SB011	23SB012	23SB013	23SB014
SAMPLE ID	23SS004-0002	23SB004-0810	23SS005-0002	23SB005-0810	23SS006-0002	23SB006-0608	23SS007-0002	23SB008 23SS008-0002	23SS009-0002	23SS010 23SS010-0002	23SS011 23SS011-0002	23SS012-0002	23SS013-0002	23SB014 23SS014-0002
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20121007	20121101	20121101	20121101	20121101	20121101	20121101	20121101	20121031
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO							
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SB	SS	SB	SS	SS	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	8	0	8	0	6	0	0	0	0	0	0	0	0
BOTTOM DEPTH	2	10	2	10	2	8	1.8	0.8	1.2	1.6	1.8	2	1.9	0.5
DIBENZO(A,H)ANTHRACENE	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
DIBENZOFURAN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIETHYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIMETHYL PHTHALATE DI-N-BUTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DI-N-OCTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
FLUORANTHENE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA
FLUORENE	NA	NA	NA	NA	NA	NA	NA							
HEXACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA							
HEXACHLOROBUTADIENE	NA	NA	NA	NA	NA	NA	NA							
HEXACHLOROCYCLOPENTADIENE	NA	NA	NA	NA	NA	NA	NA							
HEXACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA							
HEXACHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA							
INDENO(1,2,3-CD)PYRENE	NA	NA	NA	NA	NA	NA	NA							
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA							
ISODRIN	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
ISOPHORONE	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA
ISOSAFROLE METHADYDI ENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NITROBENZENE N-NITROSODIETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIETHTLAMINE N-NITROSODIMETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-BUTYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-PROPYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMORPHOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOPIPERIDINE	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
N-NITROSOPYRROLIDINE	NA	NA	NA	NA	NA	NA	NA							
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA	NA	NA	NA	NA	NA	NA							
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA							
P-DIMETHYLAMINOAZOBENZENE	NA	NA	NA	NA	NA	NA	NA							
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA							
PENTACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA							
PHENACETIN	NA	NA	NA	NA	NA	NA	NA							
PHENANTHRENE	NA	NA	NA	NA	NA	NA	NA							
PHENOL	NA	NA	NA	NA	NA	NA	NA							
PRONAMIDE	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRIDINE SAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THIONAZIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP HERBICIDES (UG/L)	IVA	INA	INA	IVA	IVA	INA	IVA	IVA	INA	INA	IVA	INA	IVA	IVA
2.4.5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA							
2,4,5-1F (SILVLX)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP METALS (UG/L)	101	1975	101	1 11/1	1473	1973	1 17 1	1 10 1	1973	1973	1971	1975	1973	147
ARSENIC	NA	NA	NA	NA	NA	NA	NA							
BARIUM	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
CADMIUM	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA							
LEAD	NA	NA	NA	NA	NA	NA	NA							
MERCURY	NA	NA	NA	NA	NA	NA	NA							
SELENIUM	NA	NA	NA	NA	NA	NA	NA							
SILVER	NA	NA	NA	NA	NA	NA	NA							
TCLP MISCELLANEOUS (UG/L)														
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA							
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA							
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA							
TCLP PESTICIDE/PCBS (UG/L)					NA NA					NA NA				
ALPHA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOXAPHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOVALLENE	LVA	IN/A	LVA	INO	LVA	11/0	INC	INA	110	IN/A	LVA	INO	11/7	INC

March 1985	LOCATION	23SI	B004	23SE	3005	23SB	006	23SB007	23SB008	23SB009	23SB010	23SB011	23SB012	23SB013	23SB014
NOTICE NOBEL NOB	SAMPLE ID		23SB004-0810						23SS008-0002			23SS011-0002			23SS014-0002
March Marc	SAMPLE DATE														
## 15 TO 15			-	-		_									
Control Sec															
Company Comp		-	-	_		_	-	_		_	-	-	-	-	-
Company Comp	TOP DEPTH		8		8	0									
Control M. M. M. M. M. M. M. M	BOTTOM DEPTH	2	10	2	10	2	8	1.8	0.8	1.2	1.6	1.8	2	1.9	0.5
STATISTICS	TCLP VOLATILES (UG/L)														
Section 15	-/													••••	
SEGN LEGISLANICA SEGN 10 500 10 10 10 10 10 10 10 10 10 10 10 10 1														••••	
March Marc															
TRIAL PROPERTY IN THE PROPERTY OF THE PROPERTY	CHLOROBENZENE														
## 1900 1900 1900 1900 1900 1900 1900 19	CHLOROFORM	NA			NA			NA			NA			NA	
### PATHS PA	TETRACHLOROETHANE							• • • •							
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Company Comp		0.00363.11	0.00222.11	0.100.111	0.00227.11	0.00224.11	0.00247.11	0.00208.11	0.00346.11	0.00270.11	0.00333.11	0.00344.11	0.00356.11	0.00267.11	0.00350.11
12.2 PTROCK (10.000 1.0000 1.0000 1.000000 1.000000 1.000000 1.00000000 1.0000000000	1,1,1-TRICHLOROETHANE														
1.2000000000000000000000000000000000000	1,1,2,2-TETRACHLOROETHANE														
1-20CT_000FTREE 20020 U 20022 U 20020	1,1,2-TRICHLOROETHANE	0.00263 U	0.00222 U	0.108 UJ		0.00224 U	0.00247 U		0.00346 U	0.00279 U		0.00244 U	0.00256 U		0.00259 U
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1,1-DICHLOROETHANE														
2.000000000000000000000000000000000000	1,1-DICHLOROETHENE				*****			*****							
Description Control															
2015-00000000000000000000000000000000000	1,2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMOETHANE														
20071690000000000000000000000000000000000	1,2-DICHLOROETHANE							*****							
## PROMOTION Control C	1,2-DICHLOROPROPANE	0.00263 U			0.00227 U		0.00247 U	0.00298 U		0.00279 U	0.00232 U		0.00256 U	0.00267 U	
CHISOPPOPER 0,0002 I	2-BUTANONE	***************************************				******		******							
## HEITH S-SPETIMENER	2-HEXANONE														
CETOME															
CETOMERIE C.0025 UR C.00															
COLOR COLO	ACETONIC														
Company Comp	ACROLEIN													0.0107 UR	
ROPOLOGIC SOURCE THANK 0,00025 U 0,0	ACRYLONITRILE														
ROSPICEM ROSPONS U 0,00022 U 0,00034 U 0,00027 U 0,00034 U 0,00027 U 0,00034 U 0,00027 U 0,00035	BENZENE				***************************************	*****	*****		***************************************			*****		***********	
ROMONETIME 0,0025 U 0,0044 U 0,0052 U 0,0069 U 0,0069 U 0,0069 U 0,0069 U 0,0069 U 0,0069 U 0,0053 U 0,0053 U 0,0053 U 0,0053 U 0,0053 U 0,0052 U 0,0025 U 0					***************************************										
ABRON PETRALINGUE 0,00058 U 0,00022 U 0,108 U 0,00027 U 0,00027 U 0,00027 U 0,00028 U 0,00038 U 0,00027 U 0,00027 U 0,00029 U 0,00029 U 0,00028 U 0,00028 U 0,00027 U 0,00029 U 0,00029 U 0,00029 U 0,00028 U 0,00028 U 0,00028 U 0,00029 U															
ARRON TERRACTIORIDE 0.00263 U 0.00222 U 0.168 UJ 0.00227 U 0.00227	CARBON DISULFIDE														
HICROETIPRINE	CARBON TETRACHLORIDE														
HORDETHANE	CHLOROBENZENE														
HIGROFORM															
HORDMETIANE															
HIGROPRENE 0,00263 U 0,00222 U 0,108 U 0,00227 U 0,0024 U 0,0027 U 0,0026 U 0,0027 U 0,0025 U 0,0026 U 0,0025 U 0,00															
S1_2-DICHORORFINEN	CHLOROPRENE														
IBROMMETHANE 0.00252 UJ	CIS-1,2-DICHLOROETHENE	0.00263 U	0.00222 U	0.108 UJ	0.00227 U	0.00224 U	0.00247 U	0.00298 U		0.00279 U	0.00232 U	0.00244 U	0.00256 U		0.00259 U
ICHLORODIFLUOROMETHANE	CIS-1,3-DICHLOROPROPENE														
THY, METHACRYLATE	DIBROMOMETHANE				***************************************										
THYLERENZENE 0,00263 U 0,00222 U 0,108 UJ 0,00227 U 0,0024 U 0,0024 U 0,0024 U 0,0026 U 0,0026 U 0,0025 U 0,002															
Comparison	ETHYL METHACRYLATE ETHYLBENZENE														
IETHACRYLONTRILE 0.0263 U 0.0222 U 1.08 UJ 0.0227 U 0.0224 U 0.0247 U 0.0298 U 0.0346 U 0.0346 U 0.0222 U 0.0044 U 0.0256 U 0.0267 U 0.0107 U 0.0104 U 0.0216 U 0.0089 U 0.433 UJ 0.00907 U 0.00895 U 0.00897 U 0.00897 U 0.0119 U 0.0118 U 0.0112 U 0.0029 U 0.00977 U 0.0025 U 0.00267 U 0.0107 U 0.0107 U 0.0104 U 0.0025 U 0.00267 U 0.0025 U 0.0024 UJ 0.0025 U 0.0024 UJ 0.0024 UJ 0.0024 UJ 0.0025 U 0.0024 UJ 0.0025 U 0.	ISOBUTANOL					*****		*****				*****		***********	
ETHYLENE CHIORIDE 0.00263 U 0.00222 UJ 0.108 UJ 0.00227 UJ 0.00224 UJ 0.00248 UJ 0.00289 U 0.00346 U 0.00279 U 0.00232 UJ 0.00244 UJ 0.00256 U 0.00256 U 0.00257 UR 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00461 U 0.00259 U 0.00259 U 0.00461 U 0.00489 U 0.00553 U 0.00259 U 0.00551 U 0.	METHACRYLONITRILE	0.0263 U	0.0222 U	1.08 UJ	0.0227 U	0.0224 U	0.0247 U	0.0298 U	0.0346 U	0.0279 U	0.0232 U	0.0244 U	0.0256 U	0.0267 U	0.0259 U
IEITHILENE CHLORIDE 0.00526 U 0.00444 U 0.216 UJ 0.00453 U 0.00485 U 0.00485 U 0.00596 U 0.00596 U 0.00595 U 0.00464 U 0.00499 U 0.00512 U 0.00533 U 0.00512 U 0.00533 U 0.00518 U 0.00518 U 0.00518 U 0.00518 U 0.00505 U 0.0026 UR 0.0026	METHYL IODIDE														
ROPIONITRILE 0.0263 UR 0.0222 UR 1.08 UR 0.0227 UR 0.0224 UR 0.0247 UR 0.0247 UR 0.0298 UR 0.0346 UR 0.0279 UR 0.0232 UR 0.00244 UR 0.0256 UR 0.0250 UR TYRENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00257 U 0.00259 U 0.00248 U 0.00248 U 0.00248 U 0.00248 U 0.00248 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U 0.00259 U 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00263 U 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U 0.00259 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U															
TYRENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.0024 U 0.0024 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00257 U 0.00259 U 0.00240 U 0.00247 U 0.00288 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U 0.00259 U 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U 0.00247 U 0.00259 U 0.00247 U 0.00259 U 0.00247 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00250 U 0.0															
ETRACHLOROETHENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00247 U 0.00247 U 0.00247 U 0.00248 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00257 U 0.00259 U	STYRENE														
OLUENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00267 U 0.00259 U OTAL XYLENES 0.00788 U 0.00667 U 0.325 UJ 0.0068 U 0.00671 U 0.0074 U 0.00894 U 0.0104 U 0.00838 U 0.00697 U 0.00733 U 0.00768 U 0.00777 U RANS-1,2-DICHLOROFTHENE 0.00263 U 0.00222 U 0.108 UJ 0.00224 U 0.00247 U 0.00298 U 0.00346 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00267 U 0.00259 U RANS-1,3-DICHLOROPROPENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00247 U 0.00249 U 0.00232 U 0.00244 U 0.00266 U 0.00266 U 0.00266 U 0.00267 U 0.00267 U 0.00259 U RICHLOROF-LIBOR 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00247 U 0.00249 U 0.0	TETRACHLOROETHENE														
RANS-1,2-DICHLOROETHENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00247 U 0.00247 U 0.00298 U 0.00298 U 0.00279 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00267 U 0.00259 U 0.00259 U 0.00267 U 0.00259 U 0.00259 U 0.00267 U 0.00259 U 0.00259 U 0.00267 U 0.00267 U 0.00259 U 0.00267 U 0.0	TOLUENE			0.108 UJ			0.00247 U	0.00298 U		0.00279 U		0.00244 U	0.00256 U	0.00267 U	
RANS-1,3-DICHLOROPROPENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00247 U 0.00247 U 0.00298 U 0.00299 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00267 U 0.00259 U 0.00259 U 0.00259 U 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.00224 U 0.00247 U 0.00298 U 0.00298 U 0.00299 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00267 U 0.00259 U 0.00259 U 0.00259 U 0.00267 U 0.00259 U 0.00267 U 0.00259 U 0.00267 U 0.00259 U 0.00267 U 0.00259 U 0.00267 U 0.00259 U 0.00267 U 0.00267 U 0.00269 U 0.0	TOTAL XYLENES														
RANS-1,4-DICHLORO-2-BUTENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.0027 U 0.0024 U 0.0024 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00256 U 0.00256 U 0.00257 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00259 U 0.00256 UJ 0.0044 UJ 0.216 UJ 0.00453 UJ 0.0047 UJ 0.00494 UJ 0.00596 U 0.00596 U 0.00599 U 0.00599 U 0.0044 U 0.00599 U 0.0044 U 0.00512 U 0.00533 U 0.00518 U 0.00512 U 0.00533 U 0.00518 U 0.00512 U 0.00533 U 0.00518 U	TRANS-1,2-DICHLOROETHENE														
RICHLOROETHENE 0.00263 U 0.00222 U 0.108 UJ 0.00227 U 0.0024 U 0.0024 U 0.00247 U 0.00298 U 0.00346 U 0.00279 U 0.00232 U 0.00244 U 0.00256 U 0.00267 U 0.00259 U 0.00259 U 0.0047 U 0.00259 U 0.0047 U 0.00494 UJ 0.00596 U 0.00599 U 0.0044 UJ 0.0044 U 0.00512 U 0.00533 U 0.00518 U 0.00512 U 0.00533 U 0.00518 U 0.00512 U 0.00533 U 0.00518 U 0.00512 U 0.00512 U 0.00513 U 0.00518 U 0.00512 U 0.00513 U 0.0051															
RICHLOROFLUOROMETHANE 0.00526 UJ 0.00444 UJ 0.216 UJ 0.00453 UJ 0.00453 UJ 0.0047 UJ 0.00494 UJ 0.00596 U 0.00599 U 0.00599 U 0.0044 U 0.00489 U 0.00512 U 0.00533 U 0.00518 U INYL ACETATE 0.00526 U 0.00444 U 0.00444 U 0.216 UJ 0.00453 U 0.00457 U 0.00494 U 0.00596 U 0.00599 U 0.00599 U 0.00444 U 0.00489 U 0.00512 U 0.00533 U 0.00518 U															
INYL ACETATE 0.00526 U 0.00444 U 0.216 UJ 0.00453 U 0.00457 U 0.00494 U 0.00596 U 0.00692 U 0.00559 U 0.0064 U 0.00489 U 0.00512 U 0.00533 U 0.00518 U	TRICHLOROFLUOROMETHANE														
NYL CHLORIDE 0.00263 UJ 0.00222 UJ 0.108 UJ 0.00227 UJ 0.00227 UJ 0.00224 UJ 0.00224 UJ 0.00247 UJ 0.00247 UJ 0.00248 UJ 0.00247 UJ 0.00279 UJ 0.00232 UJ 0.00244 UJ 0.00246 UJ 0.00256 UJ 0.00256 UJ 0.00259 UJ	VINYL ACETATE														
	VINYL CHLORIDE	0.00263 UJ	0.00222 UJ	0.108 UJ	0.00227 UJ	0.00224 UJ	0.00247 UJ	0.00298 UJ	0.00346 UJ	0.00279 UJ	0.00232 UJ	0.00244 UJ	0.00256 UJ	0.00267 UJ	0.00259 UJ

LOCATION	23SI	2004	226	DOOF	226	D006	220007	2250000	2200000	2200010	2200011	2250012	2250012	2200014
LOCATION				B005		B006	23SB007	23SB008	23SB009	23SB010	23SB011	23SB012	23SB013	23SB014
SAMPLE ID	23SS004-0002	23SB004-0810	23SS005-0002	23SB005-0810	23SS006-0002	23SB006-0608	23SS007-0002	23SS008-0002	23SS009-0002	23SS010-0002	23SS011-0002	23SS012-0002	23SS013-0002	23SS014-0002
SAMPLE DATE	20121007	20121007	20121007	20121007	20121007	20121007	20121101	20121101	20121101	20121101	20121101	20121101	20121101	20121031
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	so	so	SO	so	SO	so	SO	so	SO	so	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SB	SS	SB	SS	SS	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	8	0	8	0	6	0	0	0	0	0	0	0	0
BOTTOM DEPTH	2	10	2	10	2	8	1.8	0.8	1.2	1.6	1.8	2	1.9	0.5
VOLATILES (UG/KG)						1		0.0		110				0.0
1.1.1.2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
, ,					NA									
1,1,2,2-TETRACHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-DIOXANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZENE											•			
BROMODICHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
					NA NA		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					
CHLOROMETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 	NA	NA	NA
CHLOROPRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CIS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYLBENZENE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
M+P-XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
							• • • •							
METHACRYLONITRILE	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
METHYL IODIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-XYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA
PENTACHLORONITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
TETRACHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NIA.					IVA	I IVA	I IVA	ı IVA	I IVA	I INA	I INA	IVA	INA
TRICHLOROFLUOROMETHANE	NA NA	NA NA								NIA		NIA		NIA
VINYL ACETATE VINYL CHLORIDE	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

LOCATION	222245	222246	2002047	222242	222244	222222	222224	222222	222222	200	2024	200	
LOCATION SAMPLE ID	23SB015 23SS015-0002	23SB016 23SS016-0002	23SB017 23SS017-0002	23SB018 23SS018-0002	23SB019 23SS019-0002	23SB020 23SS020-0002	23SB021 23SS021-0002	23SB022 23SS022-0002	23SB023 23SS023-0002	23SI 23SB024-0406	B024 23SB024-0608	23SI 23SB025-0406	B025 23SB025-0608
SAMPLE DATE	20121031	20121031	20121031	20121101	20121101	20121101	20121101	20121101	20121101	20121007	20121007	20121007	20121007
SAMPLE CODE	NORMAL ORMAL	NORMAL	NORMAL										
MATRIX	SO O	SO	SO										
SAMPLE TYPE	NORMAL ORMAL	NORMAL	NORMAL										
SUBMATRIX	SS	SB	SB	SB	SB								
TOP DEPTH	0	0	0	0	0	0	0	0	0	4	6	4	6
BOTTOM DEPTH	0.8	0.3	1.3	1.6	2	1.6	2	1.8	2	6	8	6	8
DIOXINS/FURANS (UG/KG) 1.2.3.4.6.7.8.9-OCDD	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDF	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HPCDF	NA A	NA	NA										
1,2,3,4,7,8-HXCDD	NA A	NA	NA										
1,2,3,4,7,8-HXCDF	NA A	NA	NA										
1,2,3,6,7,8-HXCDD	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	NA NA A NA	NA NA	NA NA										
1,2,3,7,8,9-HXCDF	NA NA A NA	NA NA	NA NA										
1,2,3,7,8-PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDF	NA NA A NA	NA NA	NA NA										
2,3,4,6,7,8-HXCDF	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA
2,3,4,7,8-PECDF	NA A	NA	NA										
2,3,7,8-TCDD	NA A	NA	NA										
2,3,7,8-TCDF	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007	NA NA A NA	NA NA	NA NA										
TEQ WHO-2007 - HALFND TOTAL HPCDD	NA NA A NA	NA NA	NA NA										
TOTAL HPCDD TOTAL HPCDF	NA NA A NA	NA NA	NA NA										
TOTAL HYCDF TOTAL HXCDD	NA NA A NA	NA NA	NA NA										
TOTAL HXCDF	NA NA A NA	NA NA	NA NA										
TOTAL PECDD	NA A	NA	NA										
TOTAL PECDF	NA A	NA	NA										
TOTAL TCDD	NA A	NA	NA										
TOTAL TCDF	NA A	NA	NA										
HERBICIDES (UG/KG)	NA	A14		NA	N/A	N/A	N.A.	214		N/A	A14		
2,4,5-T 2.4.5-TP (SILVEX)	NA NA A NA	NA NA	NA NA										
2,4,5-1P (SILVEX) 2,4-D	NA NA A NA	NA NA	NA NA										
METALS (MG/KG)	INA	INA	INA	IVA	IVA	IVA	INA	INA	INA	INA	INA	INA	INA
ANTIMONY	2.39 U	2.52 U	6.49	2.61 U	2.46 U	2.76 U	2.6 U	2.56 U	2.72 U	2.22 U	2.06 U	2.33 U	2.37 U
ARSENIC	6.19	9.32	8.27	5.3	3.64	5.67	3.94	3.51	4.11	19.7	3.51	1.28 J	6.82
BARIUM	73.4	104	65.9	96.1	63.1	113	66	51.2	114	11.8	8.52 J	31.5	74.9
BERYLLIUM	0.511 J	0.666 J	0.463 J	0.606 J	0.585 J	0.963 J	0.47 J	0.571 J	0.663 J	0.556 U	0.515 U	0.582 U	0.795 J
CADMIUM	0.597 U	0.631 U	0.355 J	0.653 U	0.614 U	0.689 U	0.65 U	0.64 U	0.679 U	0.556 U	0.515 U	0.582 U	0.618 J
CHROMIUM	19.9	18.9	22.8	13.5	11.2	12.7	12.3	9.94	8.65	12.6	7.4	7.06	21.2
COBALT COPPER	7.38 26.5	9.12 19	5.62 26.8	8.61 8.62	11.6 7.92	9.82 12.2	12.8 8.29	14.6 6.74	8.22 9.67	2.78 U 41.3	2.57 U 4.81	2.71 J 5.26	11.4 18.4
LEAD	79	70.2	1920	18.5	11.6	22.9	16.5	12.7	27.4	17.7	5.56	11.2	19.3
MERCURY	0.123	0.0784	0.0815	0.0562	0.0411 J	0.0685	0.0462	0.065	0.0762	0.0882	0.0448	0.0263 J	0.022 J
NICKEL	12.5	15.6	11.3	10	11.5	19.4	14.8	14.2	11.9	4.3	2.14 J	6.09	18
SELENIUM	1.49 U	1.58 U	1.77 U	1.63 U	1.54 U	1.72 U	1.63 U	1.6 U	1.7 U	1.39 U	1.29 U	1.46 U	1.48 U
SILVER	0.597 U	0.631 U	0.708 U	0.653 U	0.614 U	0.689 U	0.65 U	0.64 U	0.679 U	0.556 U	0.515 U	0.582 U	0.593 U
THALLIUM	1.19 U	1.26 U	1.42 U	1.31 U	1.23 U	1.38 U	1.3 U	1.28 U	1.36 U	1.11 U	1.03 U	1.16 U	1.19 U
VANADIUM	26.6	23.4	22.6	21.7	14.9	20.4	19.4	14.2	12.9	16	6.39	6.23	31.3
ZINC METALS (UG/KG)	63.3	53.2	112	37.7	40.4	51.1	45.1	45.1	44.7	7.59 U	3.85 U	15.8	74.3
ANTIMONY	NA A	NA	NA										
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM	NA A	NA	NA										
BERYLLIUM	NA A	NA	NA										
CADMIUM	NA NA	NA A	NA	NA									
CHROMIUM	NA NA A NA	NA NA	NA NA										
COBALT COPPER	NA NA A NA	NA NA	NA NA										
LEAD	NA NA A NA	NA NA	NA NA										
LITHIUM	NA NA A NA	NA NA	NA NA										
MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NICKEL	NA A	NA	NA										
SELENIUM	NA A	NA	NA										
SILVER	NA A	NA	NA										
THALLIUM	NA A	NA	NA										
TIN	NA NA A NA	NA NA	NA NA										
VANADIUM ZINC	NA NA A NA	NA NA	NA NA										
MISCELLANEOUS PARAMETERS (%)	INA	INA	INA	INA	NA	INA	INA	IVA	INA	INA	INA	INA	INA
ACTINOLITE	NA A	NA	NA										
AMOSITE	NA NA A NA	NA NA	NA NA										
ANTHOPHYLLITE	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
ASBESTOS	NA A	NA	NA										
CHRYSOTILE	NA A	NA	NA										
CROCIDOLITE	NA A	NA	NA										
TREMOLITE	NA A	NA	NA										

LOCATION SAMPLE ID SAMPLE DATE	23SB015 23SS015-0002 20121031	23SB016 23SS016-0002 20121031	23SB017 23SS017-0002 20121031	23SB018 23SS018-0002 20121101	23SB019 23SS019-0002 20121101	23SB020 23SS020-0002 20121101	23SB021 23SS021-0002 20121101	23SB022 23SS022-0002 20121101	23SB023 23SS023-0002 20121101	23SB 23SB024-0406 20121007	23SB024-0608 20121007	23SB 23SB025-0406 20121007	23SB025-0608 20121007
SAMPLE CODE MATRIX	NORMAL SO ORMAL SO	NORMAL SO	NORMAL SO										
SAMPLE TYPE SUBMATRIX	NORMAL SS	NORMAL SB	NORMAL SB	NORMAL SB	NORMAL SB								
TOP DEPTH	0	0	0	0	0	0	0	0	0	4	6	4	6
BOTTOM DEPTH	0.8	0.3	1.3	1.6	2	1.6	2	1.8	2	6	8	6	8
MISCELLANEOUS PARAMETERS (F) FLASHPOINT	NA	NA	NA	NA	NA	NA I	NA I	NA	NA	NA	NA	NA NA	NA
MISCELLANEOUS PARAMETERS (MG/		IVA VA	IVA	IVA									
SULFATE	11.4 U	12.9 U	14 U	12.7 U	9.87 J	13.4 U	13 J	13 U	13.9 U	33.4 J	NA	95.9 J	NA
MISCELLANEOUS PARAMETERS (S.U.)	8.23	7.97	7.92	6.62	6.35	6.83	5.69	6.11	6.6	8.5	NA	8.8	NA
MISCELLANEOUS PARAMETERS (UG/I	0.25	7.57	7.52	0.02	0.55	0.03	5.05	0.11	0.0	0.5	101	0.0	101
CYANIDE	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
SULFIDE ORGANOPHOSPHOROUS PESTICIDES	NA A	NA	NA										
DIMETHOATE	NA A	NA	NA										
DISULFOTON	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
ETHYL PARATHION FAMPHUR	NA NA A NA	NA NA	NA NA										
METHYL PARATHION	NA NA	NA NA A NA	NA NA	NA NA									
PHORATE	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
PRONAMIDE SULFOTEPP	NA NA A NA	NA NA	NA NA										
PCBS (MG/KG)	11/2	ING	IVA	13/7	11/7	11/0	11/1	ING	INA	(NA	11/7	1 1/7	ING
AROCLOR-1016	0.175 U	0.00212 U	0.0294 U	0.00209 U	0.00195 U	0.00223 U	0.00204 UJ	0.00211 U	0.00231 U	0.00184 UJ	NA	0.0018 UJ	NA
AROCLOR-1221 AROCLOR-1232	0.175 U 0.175 U	0.00212 U 0.00212 U	0.0294 U 0.0294 U	0.00209 U 0.00209 U	0.00195 U 0.00195 U	0.00223 U 0.00223 U	0.00204 UJ 0.00204 UJ	0.00211 U 0.00211 U	0.00231 U 0.00231 U	0.00184 UJ 0.00184 UJ	NA NA	0.0018 UJ 0.0018 UJ	NA NA
AROCLOR-1232 AROCLOR-1242	0.175 U 0.175 U	0.00212 U 0.00212 U	0.0294 U 0.0294 U	0.00209 U 0.00209 U	0.00195 U 0.00195 U	0.00223 U 0.00223 U	0.00204 UJ 0.00204 UJ	0.00211 U 0.00211 U	0.00231 U 0.00231 U	0.00184 UJ 0.00184 UJ	NA NA	0.0018 UJ 0.0018 UJ	NA NA
AROCLOR-1248	0.0384 U	0.00212 U	0.0294 U	0.00209 U	0.00195 U	0.00223 U	0.00204 UJ	0.00211 U	0.00231 U	0.00184 UJ	NA	0.0018 UJ	NA
AROCLOR-1254	0.0384 U	0.00212 U	0.0154 J	0.00127 J	0.00162 J	0.00223 U	0.00204 UJ	0.00185 J	0.00158 J	0.00184 UJ	NA NA	0.0018 UJ	NA NA
AROCLOR-1260 PESTICIDES/PCBS (UG/KG)	0.0341	0.0046 J	0.0134	0.00384 J	0.00195 U	0.00398 J	0.00204 UJ	0.00208 J	0.018	0.00184 UJ	NA	0.0018 UJ	NA
1,1-DICHLOROETHENE	NA A	NA	NA										
4,4'-DDD	NA A	NA	NA										
4,4'-DDE 4.4'-DDT	NA NA A NA	NA NA	NA NA										
ALDRIN	NA NA	NA NA A NA	NA NA	NA NA									
ALPHA-BHC	NA A	NA	NA										
ALPHA-CHLORDANE	NA NA A NA	NA NA	NA NA										
AROCLOR-1016 AROCLOR-1221	NA NA A NA	NA NA	NA NA										
AROCLOR-1232	NA A	NA	NA										
AROCLOR-1242	NA NA	NA NA A NA	NA NA	NA NA									
AROCLOR-1248 AROCLOR-1254	NA NA A NA	NA NA	NA NA										
AROCLOR-1260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BETA-BHC	NA A	NA	NA										
CHLORDANE DELTA-BHC	NA NA A NA	NA NA	NA NA										
DIELDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
ENDOSULFAN I	NA A	NA	NA										
ENDOSULFAN II	NA NA A NA	NA NA	NA NA										
ENDOSULFAN SULFATE ENDRIN	NA NA A NA	NA NA	NA NA										
ENDRIN ALDEHYDE	NA A	NA	NA										
ENDRIN KETONE	NA NA A NA	NA NA	NA NA										
GAMMA-BHC (LINDANE) GAMMA-CHLORDANE	NA NA A NA	NA NA	NA NA										
HEPTACHLOR	NA A	NA	NA										
HEPTACHLOR EPOXIDE	NA NA A NA	NA NA	NA NA										
KEPONE METHOXYCHLOR	NA NA A NA	NA NA	NA NA										
PHORATE	NA A	NA	NA										
TOXAPHENE	NA A	NA	NA										
DRO (C08-C28)	28.8	13.7 J	50.3	20.2	11.3 J	18.9	19.8	14.7 J	21.1	7.58 U	7.15 U	11.5 J	18.3
DRO (C08-C34)	61.2	27.9	85.9	42.3	24.2	54.6	76	65.4	61.6	10.3 J	9.11 J	32.7	33.3
GASOLINE RANGE ORGANICS	5.62 U	6.36 U	7.45 U	6.27 U	5.54 U	6.32 U	5.78 U	5.96 U	6.15 U	5.32 U	4.91 U	5.2 U	5.46 U
POLYCYCLIC AROMATIC HYDROCARE 1-METHYLNAPHTHALENE	NA	NA	NA	NA	NA NA	NA I	NA I	NA	NA	NA	NA	NA NA	NA
2-METHYLNAPHTHALENE	0.00366 U	0.00412 U	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.00426 U	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
ACENAPHTHENE	0.00366 U	0.00412 U	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.00426 U	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
ACENAPHTHYLENE	0.00366 U	0.00412 U	0.0464 U	0.00422 U	0.00392 U 0.00392 U	0.00436 U	0.00408 U	0.00426 U	0.00463 U	0.00369 U	0.00358 U	0.0182 U 0.0182 U	0.0369 U
ANTHRACENE BAP EOUIVALENT-HALFND	0.00767 U 0.0645666	0.00412 U 0.0317066	0.0464 U 0.0628782	0.00422 U 0.0051572		0.00436 U 0.0195113	0.00408 U 0.0147249	0.00426 U 0.0138514	0.00463 U 0.0171978	0.00369 U 0.00369 U	0.00358 U 0.00358 U	0.0182 U 0.0182 U	0.0369 U 0.0369 U
	0.0645666	0.0296466	0.014135	0.000492	0.00392 U	0.0171111	0.0122749	0.0117214	0.014649	0.00369 U	0.00358 U	0.0182 U	0.0369 U
BENZO(A)ANTHRACENE	0.0306	0.0113	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.00812 J	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
BENZO(A)PYRENE BENZO(B)FLUORANTHENE	0.0396 0.0379	0.025 0.0144	0.0464 U 0.0525 J	0.00422 U 0.00492 J	0.00392 U 0.00392 U	0.0149 0.0102	0.0115 0.00713 J	0.00919 0.00955	0.0122 0.0143	0.00369 U 0.00369 U	0.00358 U 0.00358 U	0.0182 U 0.0182 U	0.0369 U 0.0369 U
BENZO(G,H,I)PERYLENE	0.0379	0.0219	0.0952	0.00492 J 0.00422 U	0.00392 U	0.0102	0.00713 J 0.00408 U	0.00933 0.00702 J	0.0143	0.00369 U	0.00358 U	0.0182 U	0.0369 U
BENZO(K)FLUORANTHENE	0.0317	0.0169	0.0685 J	0.00422 U	0.00392 U	0.00711 J	0.00619 J	0.00695 J	0.0122	0.00369 U	0.00358 U	0.0182 U	0.0369 U
CHRYSENE	0.0396	0.0176	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.0109	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U

LOCATION	23SB015	23SB016	23SB017	23SB018	23SB019	23SB020	23SB021	23SB022	23SB023	23SE	3024	2361	B025
SAMPLE ID	23SS015-0002	23SS016-0002	23SS017-0002	23SS018-0002	2355019-0002	2355020-0002	23SS021-0002	23SS022-0002	2355023-0002	23SB024-0406	23SB024-0608	23SB025-0406	23SB025-0608
SAMPLE DATE	20121031	20121031	20121031	20121101	20121101	20121101	20121101	20121101	20121101	20121007	20121007	20121007	20121007
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO.	SO	SO	SO	SO	SO						
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS 0	SS 0	SS 0	SS 0	SS	SS 0	SS 0	SS 0	SS	SB	SB	SB	SB
TOP DEPTH BOTTOM DEPTH	0.8	0.3	1,3	16	'	1.6	2	1.8	0	6	0 8	6	
DIBENZO(A,H)ANTHRACENE	0.0143	0.00412 U	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.00426 U	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
FLUORANTHENE	0.0923 J	0.0305 J	0.117 J	0.00892 U	0.00481 U	0.017 J	0.0157 J	0.0213 J	0.0283 J	0.00369 U	0.00358 U	0.0182 U	0.0369 U
FLUORENE	0.00366 U	0.00412 U	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.00426 U	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
INDENO(1,2,3-CD)PYRENE	0.0346	0.0189	0.082 J	0.00422 U	0.00392 U	0.0112	0.00408 U	0.00684 J	0.00897 J	0.00369 U	0.00358 U	0.0182 U	0.0369 U
NAPHTHALENE	0.00366 U	0.00412 U	0.0464 U	0.00422 U	0.00392 U	0.00436 U	0.00408 U	0.00426 U	0.00463 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
PHENANTHRENE	0.0431 U	0.016 U	0.0613 J	0.0057 U	0.00392 U	0.00818 U	0.00923 U	0.0117 U	0.0167 U	0.00369 U	0.00358 U	0.0182 U	0.0369 U
PYRENE SEMIVOLATILES (UG/KG)	0.0723 J	0.0258 J	0.105 J	0.00706 U	0.00392 U	0.0144 J	0.0137 J	0.0169 J	0.023 J	0.00369 U	0.00358 U	0.0182 U	0.0369 U
1,2,4,5-TETRACHLOROBENZENE	NA	NA	NA I	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROBENZENE	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3,5-TRINITROBENZENE	NA												
1,3-DICHLOROBENZENE	NA												
1,3-DINITROBENZENE	NA												
1,4-DICHLOROBENZENE	NA												
1,4-NAPHTHOQUINONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-PHENYLENEDIAMINE 1-NAPHTHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1-NAPHTHYLAMINE 2.3.4.6-TETRACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,6-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2,4-DIMETHYLPHENOL	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA
2,4-DINITROPHENOL	NA												
2,4-DINITROTOLUENE	NA												
2,6-DICHLOROPHENOL	NA												
2,6-DINITROTOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-ACETYLAMINOFLUORENE 2-CHLORONAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-CHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-METHYLPHENOL	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NAPHTHYLAMINE	NA												
2-NITROANILINE	NA												
2-NITROPHENOL	NA												
2-PICOLINE	NA												
3,3'-DICHLOROBENZIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
3,3'-DIMETHYLBENZIDINE 3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE 3-METHYLCHOLANTHRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-NITROANILINE	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA
4,6-DINITRO-2-METHYLPHENOL	NA												
4-AMINOBIPHENYL	NA												
4-BROMOPHENYL PHENYL ETHER	NA												
4-CHLORO-3-METHYLPHENOL	NA	NA	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA
4-CHLOROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROPHENYL PHENYL ETHER 4-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA
4-NITROQUINOLINE-1-OXIDE	NA												
5-NITRO-O-TOLUIDINE	NA												
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA												
A,A-DIMETHYLPHENETHYLAMINE	NA												
ACENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
ACENAPHTHYLENE ACETOPHENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANILINE	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
ANTHRACENE	NA												
ARAMITE	NA												
BENZO(A)ANTHRACENE	NA												
BENZO(A)PYRENE	NA												
BENZO(B)FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
BENZO(G,H,I)PERYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(K)FLUORANTHENE BENZYL ALCOHOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROETHOXY)METHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROETHOXY)METHANE BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
BUTYL BENZYL PHTHALATE	NA												
CHLOROBENZILATE	NA												
CHRYSENE	NA												
DIALLATE	NA												

LOCATION	23SB015	23SB016	23SB017	23SB018	23SB019	23SB020	23SB021	23SB022	23SB023	2356	3024	235	B025
SAMPLE ID	23SS015-0002	23SS016-0002	23SS017-0002	23SS018-0002	23SS019-0002	23SS020-0002	23SS021-0002	23SS022-0002	23SS023-0002	23SB024-0406	23SB024-0608	23SB025-0406	23SB025-0608
SAMPLE DATE SAMPLE CODE	20121031 NORMAL	20121031 NORMAL	20121031 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121101 NORMAL	20121007 NORMAL	20121007 NORMAL	20121007 NORMAL	20121007 NORMAL
MATRIX	SO												
SAMPLE TYPE	NORMAL												
SUBMATRIX	ss	SB	SB	SB	SB								
TOP DEPTH BOTTOM DEPTH	0 0.8	0 0.3	0 1.3	0 1.6	0	0 1.6	0	0 1.8	0 2	4	6 8	6	6 8
DIBENZO(A,H)ANTHRACENE	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBENZOFURAN	NA												
DIETHYL PHTHALATE DIMETHYL PHTHALATE	NA NA												
DI-N-BUTYL PHTHALATE	NA NA												
DI-N-OCTYL PHTHALATE	NA												
DIPHENYLAMINE	NA NA	NA NA											
ETHYL METHANE SULFONATE FLUORANTHENE	NA NA												
FLUORENE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
HEXACHLOROBENZENE	NA												
HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	NA NA												
HEXACHLOROETHANE	NA NA												
HEXACHLOROPROPENE	NA												
INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL ISODRIN	NA NA												
ISOPHORONE	NA NA												
ISOSAFROLE	NA												
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
METHYL METHANE SULFONATE NAPHTHALENE	NA NA												
NITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA						
N-NITROSODIETHYLAMINE	NA												
N-NITROSODIMETHYLAMINE	NA NA												
N-NITROSO-DI-N-BUTYLAMINE N-NITROSO-DI-N-PROPYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE	NA												
N-NITROSOMORPHOLINE N-NITROSOPIPERIDINE	NA NA												
N-NITROSOPIPERIDINE N-NITROSOPYRROLIDINE	NA NA	NA NA											
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA												
O-TOLUIDINE	NA NA	NA NA											
P-DIMETHYLAMINOAZOBENZENE PENTACHLOROBENZENE	NA NA												
PENTACHLOROPHENOL	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA				
PHENACETIN	NA												
PHENANTHRENE PHENOL	NA NA												
PRONAMIDE	NA NA												
PYRENE	NA												
PYRIDINE	NA NA	NA NA											
SAFROLE THIONAZIN	NA NA												
TCLP HERBICIDES (UG/L)													191
2,4,5-TP (SILVEX)	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Z,4-D TCLP METALS (UG/L)	NA												
ARSENIC	NA												
BARIUM	NA												
CADMIUM	NA NA												
CHROMIUM LEAD	NA NA												
MERCURY	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA
SELENIUM	NA												
SILVER TCLP MISCELLANEOUS (UG/L)	NA												
PAINT FILTER	NA												
REACTIVE CYANIDE	NA												
REACTIVE SULFIDE	NA												
ALPHA-CHLORDANE	NA												
ENDRIN	NA NA												
GAMMA-BHC (LINDANE)	NA												
GAMMA-CHLORDANE	NA NA												
HEPTACHLOR HEPTACHLOR EPOXIDE	NA NA												
METHOXYCHLOR	NA NA												
TOXAPHENE	NA												

LOCATION	23SB015	23SB016	23SB017	23SB018	23SB019	23SB020	23SB021	23SB022	23SB023	235	B024	23SE	025
SAMPLE ID	23SS015-0002	2355016-0002	23SS017-0002	2355018-0002	23SS019-0002	23SS020-0002	23SS021-0002	23SS022-0002	23SS023-0002	23SB024-0406	23SB024-0608	23SB025-0406	23SB025-0608
SAMPLE DATE	20121031	20121031	20121031	20121101	20121101	20121101	20121101	20121101	20121101	20121007	20121007	20121007	20121007
SAMPLE CODE	NORMAL ORMAL	NORMAL	NORMAL										
MATRIX	SO O	SO	SO										
SAMPLE TYPE	NORMAL ORMAL	NORMAL	NORMAL										
SUBMATRIX	SS	SB	SB	SB	SB								
TOP DEPTH	0	0	0	0	0	0	0	0	0	4	6	4	6
TCLP VOLATILES (UG/L)	0.8	0.3	1.3	1.6	2	1.6	2	1.8	2	6	8	6	8
1,2-DICHLOROETHANE	NA A	NA	NA										
2-BUTANONE	NA NA	NA NA A NA	NA NA	NA NA									
BENZENE	NA NA	NA NA	NA NA	NA	NA	NA NA	NA.	NA NA	NA	NA	NA	NA NA	NA
CARBON TETRACHLORIDE	NA A	NA	NA										
CHLOROBENZENE	NA A	NA	NA										
CHLOROFORM	NA A	NA	NA										
TETRACHLOROETHANE	NA A	NA	NA										
TRICHLOROETHENE	NA A	NA	NA										
VOLATILES (MG/KG)	0.00257.11	0.00274.11	0.00212.11	0.00357.11	0.00242.11	0.00227.11	0.00270.11	0.00274.11	0.00000 11	0.122.117	0.122.111	0.12.117	0.126.117
1,1,1,2-TETRACHLOROETHANE	0.00257 U	0.00274 U	0.00312 U 0.00312 U	0.00257 U	0.00242 U	0.00327 U 0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ 0.133 UJ	0.123 UJ	0.13 UJ 0.13 UJ	0.136 UJ
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	0.00257 U 0.00257 U	0.00274 U 0.00274 U	0.00312 U 0.00312 U	0.00257 U 0.00257 U	0.00242 U 0.00242 U	0.00327 U	0.00279 U 0.00279 U	0.00274 U 0.00274 U	0.00289 U 0.00289 U	0.133 UJ 0.133 UJ	0.123 UJ 0.123 UJ	0.13 UJ 0.13 UJ	0.136 UJ 0.136 UJ
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
1.1-DICHLOROETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
1,1-DICHLOROETHENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
1,2,3-TRICHLOROPROPANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
1,2-DIBROMO-3-CHLOROPROPANE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.00549 U	0.00578 U	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
1,2-DIBROMOETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
1,2-DICHLOROETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00124 J	0.00327 U	0.00145 J	0.00143 J	0.00153 J	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
1,2-DICHLOROPROPANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
2-BUTANONE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.0118	0.00592 J	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
2-HEXANONE 3-CHLOROPROPENE	0.00514 U 0.00257 U	0.00549 U 0.00274 U	0.00625 U 0.00312 U	0.00515 U 0.00257 U	0.00483 U 0.00242 U	0.00654 U 0.00327 U	0.00557 U 0.00279 U	0.00549 U 0.00274 U	0.00578 U 0.00289 U	0.266 UJ 0.133 UJ	0.246 UJ 0.123 UJ	0.26 UJ 0.13 UJ	0.273 UJ 0.136 UJ
4-METHYL-2-PENTANONE	0.00237 U 0.00514 U	0.00274 U	0.00312 U	0.00237 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ 0.266 UJ	0.123 UJ 0.246 UJ	0.13 UJ	0.136 UJ
ACETONE	0.00314 U	0.00349 U	0.00025 UJ	0.00313 U	0.00967 UJ	0.00034 U	0.00337 0	0.0693 J	0.00378 U	0.532 UJ	0.491 UJ	0.20 UJ	0.546 UJ
ACETONITRILE	0.0257 UR	0.0274 UR	0.0312 UR	0.0257 UR	0.0242 UR	0.0327 UR	0.0279 UR	0.0274 UR	0.0289 UR	1.33 UR	1,23 UR	1.3 UR	1.36 UR
ACROLEIN	0.0103 UR	0.011 UR	0.0125 UR	0.0103 UR	0.00967 UR	0.0131 UR	0.0111 UR	0.011 UR	0.0116 UR	0.532 UR	0.491 UR	0.52 UR	0.546 UR
ACRYLONITRILE	0.0103 U	0.011 U	0.0125 U	0.0103 U	0.00967 U	0.0131 U	0.0111 U	0.011 U	0.0116 U	0.532 UJ	0.491 UJ	0.52 UJ	0.546 UJ
BENZENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
BROMODICHLOROMETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
BROMOFORM	0.00257 U 0.00514 UJ	0.00274 U 0.00549 UJ	0.00312 U 0.00625 UJ	0.00257 U 0.00515 UJ	0.00242 U 0.00483 UJ	0.00327 U 0.00654 UJ	0.00279 U 0.00557 UJ	0.00274 U 0.00549 UJ	0.00289 U 0.00578 UJ	0.133 UJ 0.266 UJ	0.123 UJ 0.246 UJ	0.13 UJ 0.26 UJ	0.136 UJ 0.273 UJ
BROMOMETHANE CARBON DISULFIDE	0.00514 UJ 0.00257 U	0.00549 UJ 0.00274 U	0.00625 UJ 0.00312 U	0.00515 UJ 0.00257 U	0.00483 UJ 0.00242 U	0.00654 UJ 0.00327 U	0.00557 UJ 0.00279 U	0.00549 UJ 0.00274 U	0.00578 UJ 0.00289 U	0.266 UJ 0.133 UJ	0.246 UJ 0.123 UJ	0.26 UJ 0.13 UJ	0.273 UJ 0.136 UJ
CARBON TETRACHLORIDE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
CHLOROBENZENE	0.00257 U	0.00271 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
CHLORODIBROMOMETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
CHLOROETHANE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.00549 U	0.00578 U	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
CHLOROFORM	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
CHLOROMETHANE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.00549 U	0.00578 U	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
CHLOROPRENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
CIS-1,2-DICHLOROETHENE	0.00257 U 0.00257 U	0.00274 U 0.00274 U	0.00312 U 0.00312 U	0.00257 U	0.00242 U 0.00242 U	0.00327 U 0.00327 U	0.00279 U 0.00279 U	0.00274 U 0.00274 U	0.00289 U 0.00289 U	0.133 UJ 0.133 UJ	0.123 UJ 0.123 UJ	0.13 UJ 0.13 UJ	0.136 UJ
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	0.00257 U	0.00274 U	0.00312 U	0.00257 U 0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ 0.136 UJ
DICHLORODIFLUOROMETHANE	0.00237 U	0.00274 U	0.00512 U	0.00237 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ 0.266 UJ	0.123 UJ 0.246 UJ	0.13 UJ	0.136 UJ
ETHYL METHACRYLATE	0.00311 U	0.00274 U	0.00023 U	0.00313 U	0.00163 U	0.0037 U	0.00337 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
ETHYLBENZENE	0.00257 U	0.00271 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
ISOBUTANOL	0.0412 UR	0.0439 UR	0.05 UR	0.0412 UR	0.0387 UR	0.0523 UR	0.0446 UR	0.0439 UR	0.0462 UR	2.13 UJ	1.97 UJ	2.08 UJ	2.18 UJ
METHACRYLONITRILE	0.0257 U	0.0274 U	0.0312 U	0.0257 U	0.0242 U	0.0327 U	0.0279 U	0.0274 U	0.0289 U	1.33 UJ	1.23 UJ	1.3 UJ	1.36 UJ
METHYL IODIDE	0.0103 U	0.011 U	0.0125 U	0.0103 U	0.00967 U	0.0131 U	0.0111 U	0.011 U	0.0116 U	0.532 UJ	0.491 UJ	0.52 UJ	0.546 UJ
METHYL METHACRYLATE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
METHYLENE CHLORIDE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.00549 U	0.00578 U	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
PROPIONITRILE	0.0257 UR	0.0274 UR	0.0312 UR	0.0257 UR	0.0242 UR	0.0327 UR	0.0279 UR	0.0274 UR	0.0289 UR	1.33 UR	1.23 UR	1.3 UR	1.36 UR
STYRENE TETRACHLOROETHENE	0.00257 U 0.00257 U	0.00274 U 0.00274 U	0.00312 U 0.00312 U	0.00257 U 0.00257 U	0.00242 U 0.00242 U	0.00327 U 0.00327 U	0.00279 U 0.00279 U	0.00274 U 0.00274 U	0.00289 U 0.00289 U	0.133 UJ 0.133 UJ	0.123 UJ 0.123 UJ	0.13 UJ 0.13 UJ	0.136 UJ 0.136 UJ
TOLUENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
TOTAL XYLENES	0.00237 U	0.00274 U	0.00312 U	0.00237 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00269 U	0.399 UJ	0.369 UJ	0.39 UJ	0.409 UJ
TRANS-1,2-DICHLOROETHENE	0.00772 U	0.0023 U	0.00337 U	0.00772 U	0.00723 U	0.00302 U	0.00279 U	0.0023 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
TRANS-1,3-DICHLOROPROPENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
TRANS-1,4-DICHLORO-2-BUTENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.004 J	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
TRICHLOROETHENE	0.00257 U	0.00274 U	0.00312 U	0.00257 U	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ
TRICHLOROFLUOROMETHANE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.00549 U	0.00578 U	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
VINYL ACETATE	0.00514 U	0.00549 U	0.00625 U	0.00515 U	0.00483 U	0.00654 U	0.00557 U	0.00549 U	0.00578 U	0.266 UJ	0.246 UJ	0.26 UJ	0.273 UJ
VINYL CHLORIDE	0.00257 UJ	0.00274 UJ	0.00312 UJ	0.00257 UJ	0.00242 U	0.00327 U	0.00279 U	0.00274 U	0.00289 U	0.133 UJ	0.123 UJ	0.13 UJ	0.136 UJ

LOCATION	23SB015	23SB016	23SB017	23SB018	23SB019	23SB020	23SB021	23SB022	23SB023	23SB	024	235	B025
SAMPLE ID	23SS015-0002	23SS016-0002	23SS017-0002	23SS018-0002	23SS019-0002	23SS020-0002	23SS021-0002	23SS022-0002	23SS023-0002	23SB024-0406	23SB024-0608	23SB025-0406	23SB025-0608
SAMPLE DATE	20121031	20121031	20121031	20121101	20121101	20121101	20121101	20121101	20121101	20121007	20121007	20121007	20121007
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO												
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SB	SB	SB								
TOP DEPTH	0	0	0	0	0	0	0	0	0	4	6	4	6
BOTTOM DEPTH	0.8	0.3	1.3	1.6	2	1.6	2	1.8	2	6	8	6	8
VOLATILES (UG/KG)													
1,1,1,2-TETRACHLOROETHANE	NA												
1,1,1-TRICHLOROETHANE	NA												
1,1,2,2-TETRACHLOROETHANE	NA												
1,1,2-TRICHLOROETHANE	NA												
1,1-DICHLOROETHANE	NA 	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
1,1-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-TRICHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMO-3-CHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMOETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROPROPANE 1,4-DIOXANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA
2-BUTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-BUTANONE 2-HEXANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYL-2-PENTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONIE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMODICHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
BROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON DISULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA												
CHLOROETHANE	NA	NA NA	NA	NA	NA								
CHLOROFORM	NA	NA NA	NA	NA	NA								
CHLOROMETHANE	NA												
CHLOROPRENE	NA												
CIS-1,3-DICHLOROPROPENE	NA												
DIBROMOMETHANE	NA												
DICHLORODIFLUOROMETHANE	NA												
ETHYL METHACRYLATE	NA												
ETHYLBENZENE	NA												
ISOBUTANOL	NA												
ISODRIN	NA												
M+P-XYLENES	NA												
METHACRYLONITRILE	NA	NA NA	NA	NA									
METHYL IODIDE	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
METHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYLENE CHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O-XYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
PENTACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLORONITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE TOTAL XVI ENIES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL ACETATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL CHLORIDE	NA												

			7									23SB031 23SB032		
LOCATION	23SB		23SB		23SE		23SI			23SB030		23SB031		
SAMPLE ID	23SB026-0406	23SB026-0608	23SB027-0002	23SB027-0204	23SB028-0002	23SB028-0204	23SB029-0002	23SB029-0204	23SB030-0002	23SB030-0002-D	23SB030-0204	23SB031-0002	23SB032-0002	23SB032-0204
SAMPLE DATE	20121007	20121007	20130518	20130518	20130518	20130518	20130518	20130518	20130519	20130519	20130519	20130519	20130519	20130519
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SB	SB	SS	SB	SS	SB	SS	SB	SS	SS	SB	SS	SS	SB
TOP DEPTH	4	6	0	2	0	2	0	2	0	0	2	0	0	2
BOTTOM DEPTH	6	8	2	1 4 '	2	4	2	4	2	2	3	1.5	2	3
DIOXINS/FURANS (UG/KG)							Ī				Ī			
	NIA	NA	NA.	NIA.	NA I	NIA	NA	NA	N/A	NA	NA	NA	NA	NA
1,2,3,4,6,7,8,9-OCDD	NA		NA	NA	NA	NA			NA			NA	NA	
1,2,3,4,6,7,8,9-OCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,5-11 CDI	NA NA													
-,-,-,-,-		NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
1,2,3,4,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2,3,7,8-TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
							• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •				
2,3,7,8-TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007 - HALFND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDD	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
TOTAL HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDD	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA
TOTAL TCDF	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
HERBICIDES (UG/KG)														
2,4,5-T	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA NA	NA	NA NA	NA NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
	IVA	IVA	INO	IVA	INA	IVA	IVA	INA	INA	IVA	INA	IVA	IVA	IVA
METALS (MG/KG)														
ANTIMONY	2.49 UJ	2.23 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	6.85 J	10.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	54.3 J	33.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	0.514 J	0.603 J	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	0.624 U	0.558 U		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA
	****		NA			NA						NA		
CHROMIUM	15.4 J	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	2.16 J	3.23 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	10.1 J	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	10.6	12.9	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA
MERCURY	0.0462	0.0774	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NICKEL	6.28 J	9.23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	1.56 U	1.4 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	0.624 U	0.558 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	1.25 U	1.12 U	NA NA	NA NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
VANADIUM	20.4 J	40.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	20.4 J 20.4 J	25.9		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA
ZINC		23.9	NA	INA	INA	NA	INA	INA	NA	INA	INA	NA	INA	IVA
METALS (UG/KG)	1		 	<u> </u>										
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LITHIUM	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NICKEL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
THALLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VANADIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZINC	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA
MISCELLANEOUS PARAMETERS (%)	17.	1973	197	1 1 1	1 17 1	11/1	17/1	11/1	1973	1973	1 17 1	1773	1 17 1	193
	N/A	NI.	T NA	NA NA	210	NIA.	NIA.	N/A	NIA.	210	NIA	NA	212	NA
ACTINOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AMOSITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHOPHYLLITE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ASBESTOS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
CHRYSOTILE	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA
CROCIDOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TREMOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION SAMPLE ID	23SB026-0406	B026 23SB026-0608	23SI 23SB027-0002	23SB027-0204	23SI 23SB028-0002	23SB028-0204	23SB029-0002	B029 23SB029-0204	23SB030-0002	23SB030 23SB030-0002-D	23SB030-0204	23SB031 23SB031-0002	23SB032-0002	B032 23SB032-0204
SAMPLE DATE	20121007	20121007	20130518	20130518	20130518	20130518	20130518	20130518	20130519	20130519	20130519	20130519	20130519	20130519
SAMPLE CODE MATRIX	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	DUP SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SB	SB	SS	SB	SS	SB	SS	SB	SS	SS	SB	SS	SS	SB
TOP DEPTH	4	6	0	2	0	2	0	2	0	0	2	0	0	2
BOTTOM DEPTH MISCELLANEOUS PARAMETERS (F)	6	8	2	4	2	4	2	4	2	2	3	1.5	2	3
FLASHPOINT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (MG/														
SULFATE	21.2 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (S.U.)	7.89	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/I	7.09	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	NA
CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ORGANOPHOSPHOROUS PESTICIDES DIMETHOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
DISULFOTON	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL PARATHION	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
FAMPHUR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHORATE PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SULFOTEPP	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PCBS (MG/KG)														
AROCLOR-1016	0.00189 UJ	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1221 AROCLOR-1232	0.00189 UJ 0.00189 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1232 AROCLOR-1242	0.00189 UJ 0.00189 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR 1242 AROCLOR-1248	0.00189 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254	0.00189 UJ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1260	0.00189 UJ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PESTICIDES/PCBS (UG/KG) 1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
ALDRIN ALPHA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ALPHA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232 AROCLOR-1242	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1260	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
BETA-BHC CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DELTA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIELDRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN II ENDOSULFAN SULFATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN SULFATE ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN ALDEHYDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN KETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-BHC (LINDANE) GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
KEPONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHOXYCHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHORATE TOXAPHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PETROLEUM HYDROCARBONS (MG/K	IVA	IVA	IVA	LVA	IVA	IVO	(NO	IVA	11/7	13/2	IVA	IVO	DVA	11/1
DRO (C08-C28)	8.06 U	7.29 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DRO (C08-C34)	10.6 J	11.1 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GASOLINE RANGE ORGANICS POLYCYCLIC AROMATIC HYDROCARE	4.77 U	5.03 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	0.0444	0.00477 J	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
ACENAPHTHENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
ACENAPHTHYLENE ANTHRACENE	0.00393 U 0.00393 U	0.00374 U 0.00374 U	0.0187 U 0.0187 U	0.00384 U 0.00384 U	0.0677 U 0.0677 U	0.00418 U 0.00418 U	0.0188 U 0.0188 U	0.00395 U 0.00395 U	0.00407 U 0.00407 U	0.00386 U 0.00386 U	0.00379 U 0.00379 U	0.00389 U 0.00389 U	0.0038 U 0.0038 U	0.0039 U 0.0039 U
BAP EOUIVALENT-HALFND	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0877 0	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
BAP EQUIVALENT-POS	0.00393 U	0.00371 U	0.0187 U	0.00384 U	0.00714	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
BENZO(A)ANTHRACENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
BENZO(A)PYRENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE	0.00393 U 0.00393 U	0.00374 U 0.00374 U	0.0187 U 0.0187 U	0.00384 U 0.00384 U	0.0714 J 0.0677 U	0.00418 U 0.00418 U	0.0188 U 0.0188 U	0.00395 U 0.00395 U	0.00407 U 0.00407 U	0.00386 U 0.00386 U	0.00379 U 0.00379 U	0.00389 U 0.00389 U	0.0038 U 0.0038 U	0.0039 U 0.0039 U
BENZO(K)FLUORANTHENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U
CHRYSENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U

LOCATION	23SB026		23SB027		23SB028		23SB029		23SB030			2250024	3031 23SB032		
LOCATION									2250220 0002		2260220 0204	23SB031			
SAMPLE ID	23SB026-0406	23SB026-0608	23SB027-0002	23SB027-0204	23SB028-0002	23SB028-0204	23SB029-0002	23SB029-0204	23SB030-0002	23SB030-0002-D	23SB030-0204	23SB031-0002	23SB032-0002	23SB032-0204	
SAMPLE DATE	20121007	20121007	20130518	20130518	20130518	20130518	20130518	20130518	20130519	20130519	20130519	20130519	20130519	20130519	
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	
MATRIX	so	SO	so	so	so										
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	
SUBMATRIX	SB	SB	SS	SB	SS	SB	SS	SB	SS	SS	SB	SS	SS	SB	
TOP DEPTH	35	55	0	2	0	2	0	35	0	0	2	0	0	2	
	4	0	0	2	9	2	0	2	1 9	0	2	_	9	1 5 1	
BOTTOM DEPTH	В	8	2	4	2	4	2	4	2	2 22225	3	1.5	2	3	
DIBENZO(A,H)ANTHRACENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U	
FLUORANTHENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0725 J	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U	
FLUORENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U	
INDENO(1,2,3-CD)PYRENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U	
NAPHTHALENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U	
PHENANTHRENE	0.00393 U	0.00374 U	0.0187 U	0.00384 U	0.0677 U	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 U	0.00389 U	0.0038 U	0.0039 U	
	0.00393 U	0.00374 U			0.0693 J						0.00379 U			0.0039 U	
PYRENE	0.00393 0	0.00374 0	0.0187 U	0.00384 U	0.0693 J	0.00418 U	0.0188 U	0.00395 U	0.00407 U	0.00386 U	0.00379 0	0.00389 U	0.0038 U	0.0039 0	
SEMIVOLATILES (UG/KG)															
1,2,4,5-TETRACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,2,4-TRICHLOROBENZENE	NA	NA	NA	NA	NA										
1,2-DICHLOROBENZENE	NA	NA	NA	NA	NA										
1,3,5-TRINITROBENZENE	NA	NA	NA	NA	NA										
1,3-DICHLOROBENZENE	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	
	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1,3-DINITROBENZENE			NA NA												
1,4-DICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1,4-NAPHTHOQUINONE	NA	NA NA	NA	NA	NA										
1,4-PHENYLENEDIAMINE	NA	NA	NA	NA	NA										
1-NAPHTHYLAMINE	NA	NA	NA	NA	NA										
2,3,4,6-TETRACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2,4,5-TRICHLOROPHENOL	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA	NA NA	
2,4,6-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
2,4-DIMETHYLPHENOL	NA ***	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2,4-DINITROPHENOL	NA	NA	NA	NA	NA										
2,4-DINITROTOLUENE	NA	NA	NA	NA	NA										
2,6-DICHLOROPHENOL	NA	NA	NA	NA	NA										
2,6-DINITROTOLUENE	NA	NA	NA	NA	NA										
2-ACETYLAMINOFLUORENE	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA.	NA	NA NA	NA NA	NA	NA	NA NA	
2-CHLORONAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
2-CHLOROPHENOL	NA	NA	NA	NA	NA										
2-METHYLNAPHTHALENE	NA	NA	NA	NA	NA										
2-METHYLPHENOL	NA	NA	NA	NA	NA										
2-NAPHTHYLAMINE	NA	NA	NA	NA	NA										
2-NITROANILINE	NA	NA	NA	NA	NA										
2-NITROPHENOL	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA.	NA	NA NA	NA NA	NA	NA	NA NA	
2-PICOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
3,3'-DICHLOROBENZIDINE	NA	NA	NA	NA	NA										
3,3'-DIMETHYLBENZIDINE	NA	NA	NA	NA	NA										
3-CHLOROPROPENE	NA	NA	NA	NA	NA										
3-METHYLCHOLANTHRENE	NA	NA	NA	NA	NA NA										
3-METHYLPHENOL	NA	NA	NA	NA	NA										
3-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
4,6-DINITRO-2-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
4-AMINOBIPHENYL	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	
4-BROMOPHENYL PHENYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
4-CHLORO-3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
4-CHLOROANILINE	NA	NA	NA	NA	NA										
4-CHLOROPHENYL PHENYL ETHER	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
4-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
4-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
		NA NA			NA NA			NA NA	NA NA		NA NA				
4-NITROPHENOL	NA NA		NA NA	NA NA		NA NA	NA NA			NA NA		NA NA	NA NA	NA NA	
4-NITROQUINOLINE-1-OXIDE	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	
5-NITRO-O-TOLUIDINE	NA	NA	NA	NA	NA										
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
A,A-DIMETHYLPHENETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
ACENAPHTHENE	NA	NA	NA	NA	NA										
ACENAPHTHYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
ACETOPHENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
ACRYLONITRILE	NA	NA	NA	NA	NA										
ANILINE	NA	NA	NA	NA	NA										
ANTHRACENE	NA	NA	NA	NA	NA										
ARAMITE	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA.	NA	NA NA	NA NA	NA	NA	NA NA	
BENZO(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
BENZO(A)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA										
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA										
BENZO(K)FLUORANTHENE	NA	NA	NA	NA	NA										
BENZYL ALCOHOL	NA	NA	NA	NA	NA										
BIS(2-CHLOROETHOXY)METHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
BIS(2-CHLOROISOPROPYL)ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
BIS(2-ETHYLHEXYL)PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
BUTYL BENZYL PHTHALATE	NA	NA	NA	NA	NA										
CHLOROBENZILATE	NA	NA	NA	NA	NA										
CHRYSENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
DIALLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
DIUCTUIL	I IVA	IN/A	IN/A	11/7	11/7	IN/A	11/7	I INC	IN/A	INA	INA	IN/A	11/7	, INC	

			T						Г					
LOCATION SAMPLE ID	23SB 23SB026-0406		23SI 23SB027-0002	3027 23SB027-0204	23SB028-0002	B028 23SB028-0204	23SB 23SB029-0002	3029 23SB029-0204	23SB030-0002	23SB030 23SB030-0002-D	23SB030-0204	23SB031 23SB031-0002	23SB032-0002	3032 23SB032-0204
SAMPLE ID SAMPLE DATE	2358026-0406	23SB026-0608 20121007	20130518	2358027-0204	2358028-0002	2358028-0204	20130518	2358029-0204	20130519	235B030-0002-D 20130519	2338030-0204	2358031-0002	2358032-0002	2358032-0204
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SB	SB	SS	SB	SS	SB	SS	SB	SS	SS	SB	SS	SS	SB
TOP DEPTH	4	6	0	2	0	2	0	2	0	0	2	0	0	2
BOTTOM DEPTH	6	8	2	4	2	4	2	4	2	2	3	1.5	2	3
DIBENZO(A,H)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBENZOFURAN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIMETHYL PHTHALATE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA
DI-N-BUTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DI-N-OCTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIPHENYLAMINE ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBUTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROCYCLOPENTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
HEXACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROPROPENE	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA
INDENO(1,2,3-CD)PYRENE	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISODRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOPHORONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOSAFROLE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHAPYRILENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHANE SULFONATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIETHYLAMINE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA
N-NITROSODIMETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-BUTYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-PROPYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIPHENYLAMINE	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE N-NITROSOMORPHOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMORPHOLINE N-NITROSOPIPERIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOPIFERIDINE N-NITROSOPYRROLIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O-TOLUIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
P-DIMETHYLAMINOAZOBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
PENTACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENACETIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PRONAMIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PYRIDINE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SAFROLE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
THIONAZIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP HERBICIDES (UG/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NIA
2,4,5-TP (SILVEX) 2,4-D	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP METALS (UG/L)	IVA	IVA	IVA	IVA	INA	INA	IVA	IVA	INA	INA	IVA	IVA	IVA	IVA
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP MISCELLANEOUS (UG/L)														
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L)														
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE)	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EDOVIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR TOYADHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOXAPHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	23SE	8026	23SE	3027	235	3028	23SE	8029		23SB030		23SB031	235	B032
SAMPLE ID	23SB026-0406	23SB026-0608	23SB027-0002	23SB027-0204	23SB028-0002	23SB028-0204	23SB029-0002	23SB029-0204	23SB030-0002	23SB030-0002-D	23SB030-0204	23SB031-0002	23SB032-0002	23SB032-0204
SAMPLE DATE	20121007	20121007	20130518	20130518	20130518	20130518	20130518	20130518	20130519	20130519	20130519	20130519	20130519	20130519
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO.	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SB	SB	SS	SB	SS	SB	SS	SB	SS	SS	SB	SS	SS	SB
TOP DEPTH	36	3D 6	0	36	33	36 2	33	30	35	33	36	0	33	2
	4	0	0	2	Ü	2	0	4	9	0	2		0	1 2
BOTTOM DEPTH	6	8		4		4		4			3	1.5		
TCLP VOLATILES (UG/L)		114		212	814	212	212	A14	210	212	314	***		
1,2-DICHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOLATILES (MG/KG)														
1.1.1.2-TETRACHLOROETHANE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
1,1,1-TRICHLOROETHANE	0.111 UJ	0.103 UJ	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
1,1,2,2-TETRACHLOROETHANE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
1,1,2-TRICHLOROETHANE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
1,1-DICHLOROETHANE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-DICHLOROETHANE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-TRICHLOROPROPANE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1.2-DIBROMO-3-CHLOROPROPANE	0.111 UJ 0.222 UJ	0.103 UJ 0.205 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	0.222 UJ 0.111 UJ		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
-/	0.111 UJ 0.111 UJ	0.103 UJ 0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROETHANE														
1,2-DICHLOROPROPANE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
2-BUTANONE	0.222 UJ	0.205 UJ	NA	NA	NA	NA	NA							
2-HEXANONE	0.222 UJ	0.205 UJ	NA	NA	NA	NA	NA							
3-CHLOROPROPENE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
4-METHYL-2-PENTANONE	0.222 UJ	0.205 UJ	NA	NA	NA	NA	NA							
ACETONE	0.443 UJ	0.41 UJ	NA	NA	NA	NA	NA							
ACETONITRILE	1.11 UR	1.03 UR	NA	NA	NA	NA	NA							
ACROLEIN	0.443 UR	0.41 UR	NA	NA	NA	NA	NA							
ACRYLONITRILE	0.443 UJ	0.41 UJ	NA	NA	NA	NA	NA							
BENZENE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
BROMODICHLOROMETHANE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
BROMOFORM	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
BROMOMETHANE	0.222 UJ	0.205 UJ	NA	NA	NA	NA	NA							
CARBON DISULFIDE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
CARBON TETRACHLORIDE	0.111 UJ	0.103 UJ	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
CHLOROBENZENE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORODIBROMOMETHANE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
CHLOROETHANE	0.222 UJ	0.205 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	0.222 UJ 0.111 UJ	0.205 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	0.111 UJ 0.222 UJ						NA NA							
CHLOROMETHANE		0.205 UJ	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,2-DICHLOROETHENE	0.111 UJ	0.103 UJ	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
CIS-1,3-DICHLOROPROPENE	0.111 UJ	0.103 UJ	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
DIBROMOMETHANE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA
DICHLORODIFLUOROMETHANE	0.222 UJ	0.205 UJ	NA	NA	NA	NA	NA							
ETHYL METHACRYLATE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
ETHYLBENZENE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
ISOBUTANOL	1.77 UJ	1.64 UJ	NA	NA	NA	NA	NA							
METHACRYLONITRILE	1.11 UJ	1.03 UJ	NA	NA	NA	NA	NA							
METHYL IODIDE	0.443 UJ	0.41 UJ	NA	NA	NA	NA	NA							
METHYL METHACRYLATE	0.111 UJ	0.103 UJ	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA
METHYLENE CHLORIDE	0.222 UJ	0.205 UJ	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA
PROPIONITRILE	1.11 UR	1.03 UR	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
STYRENE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
TETRACHLOROETHENE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL XYLENES							NA NA							
	0.332 UJ	0.308 UJ	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	0.111 UJ	0.103 UJ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
TRICHLOROETHENE	0.111 UJ	0.103 UJ	NA	NA	NA	NA	NA							
TRICHLOROFLUOROMETHANE	0.222 UJ	0.205 UJ	NA	NA	NA	NA	NA							
VINYL ACETATE	0.222 UJ 0.111 UJ	0.205 UJ	NA	NA	NA	NA	NA							
		0.103 UJ	NA	NA	NA	NA	NA							

LOCATION	23SB	8026	23SI	2027	235	B028	235	R029		23SB030		23SB031	235	B032
SAMPLE ID	23SB026-0406	23SB026-0608	23SB027-0002	23SB027-0204	23SB028-0002	23SB028-0204	23SB029-0002	23SB029-0204	23SB030-0002	23SB030-0002-D	23SB030-0204	23SB031-0002	23SB032-0002	23SB032-0204
SAMPLE DATE	20121007	20121007	20130518	20130518	20130518	20130518	20130518	20130518	20130519	20130519	20130519	20130519	20130519	20130519
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO									
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SB	SB	SS	SB	SS	SB	SS	SB	SS	SS	SB	SS	SS	SB
TOP DEPTH	35	6	0	2	0	2	0	2	0	0	2	0	0	2
BOTTOM DEPTH			9	4	3	2	3	2	0	9	2	1.5	١	3
	6	•		4		4		4		Z	3	1.5		
VOLATILES (UG/KG) 1.1.1.2-TETRACHLOROETHANE	NA	NA	NA	NA	NA									
							NA NA							
1,1,1-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2,2-TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-TRICHLOROETHANE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-TRICHLOROPROPANE	NA	NA NA	NA	NA NA	NA	NA NA	NA							
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA									
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA									
1,2-DICHLOROETHANE	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA						
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA									
1,4-DIOXANE	NA	NA	NA	NA	NA									
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA	NA									
2-BUTANONE	NA	NA	NA	NA	NA									
2-HEXANONE	NA	NA	NA	NA	NA									
3-CHLOROPROPENE	NA	NA	NA	NA	NA									
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA									
ACETONE	NA	NA	NA	NA	NA									
ACETONITRILE	NA	NA	NA	NA	NA									
ACROLEIN	NA	NA	NA	NA	NA									
BENZENE	NA	NA	NA	NA	NA									
BROMODICHLOROMETHANE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
BROMOFORM	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
CARBON DISULFIDE	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORODIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
			NA NA				NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	
CIS-1,3-DICHLOROPROPENE	NA NA	NA NA		NA NA	NA NA	NA NA					NA NA			NA NA
DIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA
ETHYL METHACRYLATE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
ETHYLBENZENE	NA	NA	NA	NA	NA									
ISOBUTANOL	NA	NA	NA	NA	NA									
ISODRIN	NA	NA	NA	NA	NA									
M+P-XYLENES	NA	NA	NA	NA	NA									
METHACRYLONITRILE	NA	NA	NA	NA	NA									
METHYL IODIDE	NA	NA	NA	NA	NA									
METHYL METHACRYLATE	NA	NA	NA	NA	NA									
METHYLENE CHLORIDE	NA	NA	NA	NA	NA									
O-XYLENE	NA	NA	NA	NA	NA									
PENTACHLOROETHANE	NA	NA	NA	NA	NA									
PENTACHLORONITROBENZENE	NA	NA	NA	NA	NA									
PROPIONITRILE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
STYRENE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA
TETRACHLOROETHANE	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA
TOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE							NA NA			NA NA			NA NA	
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA
TRICHLOROFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL ACETATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL CHLORIDE	NA	NA	NA	NA	NA									

LOCATION	225	SB033	23SE	2024	23SB035	23SB	026	23SE	B027	23SB038	23SB039	23SB040	23SB041	23SB042
SAMPLE ID	23SB033-0002	23SB033-0002-D	23SB034-0002	23SB034-0204	23SB035 23SB035-0002	23SB036-0002	23SB036-0204	23SB037-0002	23SB037-0204	23SS038-0002	23SS039-0002	23SS040-0002	23SS041 23SS041-0002	23SS042 23SS042-0002
SAMPLE DATE	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20140328	20140328	20140328	20140328	20140328
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO SO	SO	SO SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SS	SS	SB	SS	SB	SS	SS	SS	SS	SS
TOP DEPTH	0	0	0	2	0	0	2	0	2	0	0	0	0	0
BOTTOM DEPTH	1	2	2	4	1	2	4	2	4	2	2	2	2	2
DIOXINS/FURANS (UG/KG) 1.2.3.4.6.7.8.9-OCDD	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8,9-OCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDD	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDF 2.3.4.6.7.8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,6,7,8-FIXCDF 2,3,4,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007 - HALFND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDF	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL PECDF TOTAL TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL TCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HERBICIDES (UG/KG)	IVA	IVA	IVA	IVA	IVA	IVA	INA	INA	IVA	IVA	IVA	IVA	IVA	IVA
2.4.5-T	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALS (MG/KG)														
ANTIMONY	0.486 UJ	0.979 UJ	0.471 UJ	0.452 UJ	0.901 UJ	0.992 UJ	1.01 UJ	0.944 UJ	0.949 UJ	NA	NA	NA	NA	NA
ARSENIC	3.78	3.66	2.63	2.81	17.8	6.65	4.82	5.37	6.04	NA	NA	NA	NA	NA
BARIUM	62.5	62.8	65.8	52.9	52	83.7	80.2	110	62	NA NA	NA NA	NA NA	NA NA	NA NA
BERYLLIUM	0.421 0.0645 J	0.446 J	0.365 0.118 U	0.287	0.327 J	0.586 J	0.457 J 0.253 U	0.644	0.331 J 0.237 U	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM CHROMIUM	9.48	0.245 U 9.95	6.89	0.113 U 7.73	0.225 U 15.6	0.248 U 9.93	12.3	0.236 U 10.7	16.8	NA NA	NA NA	NA NA	NA NA	NA NA
COBALT	8.09 J	7.89 J	6.44 J	6.21 J	7.39 J	10.9 J	4.34 J	15.4 J	2.9 J	NA NA	NA NA	NA NA	NA NA	NA NA
COPPER	6,29	5.88	4.19	4.79	28.9	11	8.88	6.06	8.47	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	9.02	8.76	6.01	6.15	27.8	31.2	20.2	9.28	6,23	41	22	23	710	87
MERCURY	0.0427	0.0396 J	0.0368 J	0.0454	0.0445	0.0481	0.0364 J	0.0209 J	0.0349 J	NA	NA	NA	NA	NA
NICKEL	8.3	8.04	7.75	7.95	17.7	14.3	10.5	14.3	10.6	NA	NA	NA	NA	NA
SELENIUM	0.425 J	0.612 U	0.294 U	0.282 U	0.563 U	0.62 U	0.634 U	0.59 U	0.593 U	NA	NA	NA	NA	NA
SILVER	0.122 U	0.245 U	0.118 U	0.113 U	0.225 U	0.248 U	0.253 U	0.236 U	0.122 J	NA	NA	NA	NA	NA
THALLIUM	0.365 U	0.49 U	0.353 U	0.339 U	0.45 U	0.496 U	0.634 U	0.472 U	0.474 U	NA NA	NA NA	NA NA	NA NA	NA NA
VANADIUM	15.5	16	10.5	13.1	16.5 47.8	15.1	16.5	17.6	28	NA NA	NA NA	NA NA	NA NA	NA NA
ZINC METALS (UG/KG)	33.9	32.1	22.5	25.8	4/.8	44.6	34.8	27	29.4	NA	NA	NA	NA	NA
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
BERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LITHIUM MEDCLIDY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MERCURY NICKEL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THALLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TIN	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VANADIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZINC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (%)														
ACTINOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AMOSITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHOPHYLLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ASBESTOS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSOTILE CROCIDOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TREMOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
I INC. I VELLE														

LOCATION	200	222	222	2024	222222	222		222	202	222222	222222	2222242	2222244	2222242
LOCATION		B033		B034	23SB035	23SE			B037	23SB038	23SB039	23SB040	23SB041	23SB042
SAMPLE ID	23SB033-0002	23SB033-0002-D	23SB034-0002	23SB034-0204	23SB035-0002	23SB036-0002	23SB036-0204	23SB037-0002	23SB037-0204	23SS038-0002	23SS039-0002	23SS040-0002	23SS041-0002	23SS042-0002
SAMPLE DATE	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20140328	20140328	20140328	20140328	20140328
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	so	SO	so	so	SO	so	so	SO	SO	SO	so	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SS	SS	SB	SS	SB	SS	SS	SS	SS	SS
TOP DEPTH	0	0	0	2	0	0	2	0	2	0	0	0	0	0
BOTTOM DEPTH	1	2	2	4	1	2	4	2	4	2	2	2	2	2
MISCELLANEOUS PARAMETERS (F)														
FLASHPOINT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (MG/														
SULFATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (S.U.)				12.										
PH	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/I	10.	101	101	103	10.	10.	107	10.	107	147 (10.	197	101	10.
CYANIDE CYANIDE	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ORGANOPHOSPHOROUS PESTICIDES		INA	INA	IVA	INA	INA	IVA	INA	IVA	IVA	IVA	IVA	INA	INA
DIMETHOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DISULFOTON	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FAMPHUR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL PARATHION	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
PHORATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PRONAMIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SULFOTEPP	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBS (MG/KG)														
AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1242	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
AROCLOR-1254 AROCLOR-1260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PESTICIDES/PCBS (UG/KG)	IN/A	INA	IVA	IVA	INA	INA	IN/A	INA	INO	INA	INA	ING	IVA	INA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA NA			NA NA			NA NA			NA NA			NA NA	
4,4'-DDD		NA NA	NA NA		NA NA	NA NA		NA NA	NA		NA NA	NA NA		NA NA
4,4'-DDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ALDRIN	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
ALPHA-BHC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1242	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1248	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA
AROCLOR-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
BETA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DELTA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIELDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN II	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN SULFATE	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN ALDEHYDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN KETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-BHC (LINDANE)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
KEPONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
PHORATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA
TOXAPHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PETROLEUM HYDROCARBONS (MG/K		1971	1773	1975	11/1	17/1	177.1	1773	1971	1771	1771	1 17 1	1773	1911
DRO (C08-C28)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DRO (C08-C28)	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA
			NA NA			NA NA			NA NA			NA NA		
GASOLINE RANGE ORGANICS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
POLYCYCLIC AROMATIC HYDROCARB		110				N.A.	214	N.A.	212	214	314			NA
1-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BAP EQUIVALENT-HALFND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BAP EQUIVALENT-POS	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
BENZO(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(A)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(B)FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	
BENZO(G,H,I)PERYLENE											NA NA			NA NA
BENZO(K)FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	226	20033	226	D024	2260025	226	0026	226	B037	2260020	220020	2250040	2250041	2200042
LOCATION SAMPLE ID	23SB033-0002	B033 23SB033-0002-D	23SB034-0002	B034 23SB034-0204	23SB035 23SB035-0002	23SB036-0002	B036 23SB036-0204	23SB037-0002	23SB037-0204	23SB038 23SS038-0002	23SB039 23SS039-0002	23SB040 23SS040-0002	23SB041 23SS041-0002	23SB042 23SS042-0002
SAMPLE DATE	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20140328	20140328	20140328	20140328	20140328
SAMPLE CODE	NORMAL			NORMAL			NORMAL			NORMAL			NORMAL	NORMAL
		DUP	NORMAL		NORMAL	NORMAL		NORMAL	NORMAL		NORMAL	NORMAL		
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO NORMAL	SO	SO	SO	SO	SO NORMAL	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SS	SS	SB	SS	SB	SS	SS	SS	SS	SS
TOP DEPTH	0	0	0	2	0	0	2	0	2	0	0	0	0	0
BOTTOM DEPTH	11	2	2	4	1	2	4	2	4	2	2	2	2	2
DIBENZO(A,H)ANTHRACENE	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FLUORENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
INDENO(1,2,3-CD)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SEMIVOLATILES (UG/KG)														
1,2,4,5-TETRACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3,5-TRINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-DINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
1,4-NAPHTHOQUINONE	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
1,4-PHENYLENEDIAMINE	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
1-NAPHTHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.3.4.6-TETRACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,6-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DICHLOROPHENOL 2,4-DIMETHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA
2,4-DINITROPHENOL		NA NA				NA NA			NA NA			NA NA		
2,4-DINITROTOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,6-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,6-DINITROTOLUENE	NA NA		NA NA	NA NA										
2-ACETYLAMINOFLUORENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-CHLORONAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-CHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-PICOLINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DICHLOROBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DIMETHYLBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLCHOLANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4.6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-AMINOBIPHENYL	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-BROMOPHENYL PHENYL ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLORO-3-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROPHENYL PHENYL ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL 4-NITROQUINOLINE-1-OXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
5-NITRO-O-TOLUIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A,A-DIMETHYLBENZ(A)ANTHRACENE A,A-DIMETHYLPHENETHYLAMINE	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
			NA NA											
ACENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACENAPHTHYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETOPHENONE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA
ACROLEIN	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
ACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARAMITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(K)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZYL ALCOHOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BIS(2-CHLOROETHOXY)METHANE	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA
BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BUTYL BENZYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA						NA NA			NA NA			NA NA	
CHLOROBENZILATE		NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA
CHRYSENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIALLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	2351	B033	2351	3034	23SB035	2356	3036	239	SB037	23SB038	23SB039	23SB040	23SB041	23SB042
SAMPLE ID	23SB033-0002	23SB033-0002-D	23SB034-0002	23SB034-0204	23SB035-0002	23SB036-0002	23SB036-0204	23SB037-0002	23SB037-0204	23SS038-0002	23SS039-0002	23SS040-0002	23SS041-0002	23SS042-0002
SAMPLE DATE	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20140328	20140328	20140328	20140328	20140328
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	ss	SB	SS	SS	SB	SS	SB	SS	SS	SS	SS	SS
TOP DEPTH	U	0	0	2	0	0	2	0	2	0	0	0	0	ا و
BOTTOM DEPTH DIBENZO(A,H)ANTHRACENE	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA
DIBENZOFURAN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIETHYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIMETHYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
DI-N-BUTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIPHENYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHANE SULFONATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FLUORENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROBENZENE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
HEXACHLOROBUTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROPROPENE HEXACHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOPHORONE	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA
ISOSAFROLE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHAPYRILENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHANE SULFONATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIETHYLAMINE	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIMETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-BUTYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMORPHOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOPIPERIDINE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
N-NITROSOPYRROLIDINE	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENACETIN	NA NA	NA 	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
PHENANTHRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENOL PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
THIONAZIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP HERBICIDES (UG/L)														
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP METALS (UG/L)														
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP MISCELLANEOUS (UG/L)	TVA	IVA	TVA	IVA	IVA	IVA	IVA	IVA	IVA	INA	IVA	IVA	IVA	TVA
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L)														
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-BHC (LINDANE)	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOYIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR TOXAPHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOVALLENE	INA	INA	INA	IVA	INA									

LOCATION	235	B033	2351	B034	23SB035	23SB	036	235	B037	23SB038	23SB039	23SB040	23SB041	23SB042
SAMPLE ID	23SB033-0002	23SB033-0002-D	23SB034-0002	23SB034-0204	23SB035-0002	23SB036-0002	23SB036-0204	23SB037-0002	23SB037-0204	2355038-0002	23SS039-0002	23SS040-0002	23SS041-0002	23SS042-0002
SAMPLE DATE	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20140328	20140328	20140328	20140328	20140328
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SS	SS	SB	SS	SB	SS	SS	SS	SS	SS
TOP DEPTH	0	0	0	2	0	0	2	0	2	0	0	0	0	0
BOTTOM DEPTH	1	2	2	4	1	2	4	2	4	2	2	2	2	1 2
TCLP VOLATILES (UG/L)														
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOLATILES (MG/KG)														
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
CHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE ISORUTANIOI	INA	NA NA	INA	INA NA	NA NA	INA	INA NA	NA NA	IVA	NA NA	NA NA	IVA	NA NA	14/1
ISOBUTANOL METHACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYLENE CHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE TETRACHI ODOETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
VINYL ACETATE		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL CHLORIDE	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA .	I NA	INA	INA	IVA

LOCATION	23SE	0022	23SI	2024	23SB035	23SB	036	226	B037	23SB038	23SB039	23SB040	23SB041	23SB042
SAMPLE ID	23SB033-0002	23SB033-0002-D	23SB034-0002	23SB034-0204	23SB035-0002	23SB036-0002	23SB036-0204	23SB037-0002	23SB037-0204	23SS038-0002	23SS039-0002	2355040-0002	23SS041-0002	23SS042-0002
SAMPLE DATE	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20130519	20140328	20140328	20140328	20140328	20140328
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SS	SS	SB	SS	SB	SS	SS	SS	SS	SS
TOP DEPTH	0	33	0	2	0			33		0	33	0		0
		0	0	2	0	0	2	9	2	0	0	0	0	0
BOTTOM DEPTH	1			4	L	2	4		4					
VOLATILES (UG/KG)	***			818	818		N. A	214	212	212				110
1,1,1,2-TETRACHLOROETHANE	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
1,1,1-TRICHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DIOXANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA.
BROMOFORM	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON DISULFIDE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORODIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	NA NA			NA NA			NA NA		• • • • • • • • • • • • • • • • • • • •		NA NA	NA NA		NA NA
CHLOROMETHANE		NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	• • • • • • • • • • • • • • • • • • • •		NA NA	NA NA
CHLOROPRENE	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
CIS-1,3-DICHLOROPROPENE	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
DIBROMOMETHANE	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYLBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISODRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
M+P-XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL IODIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-XYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLORONITROBENZENE	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA.
PROPIONITRILE	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
STYRENE	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE		NA NA				+						NA NA		
TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL ACETATE	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

			1			1		1		1	1			
LOCATION	23SB043	23SB044		B045	23SB046	23SB047	23SB048	23SB049	23SB050	23SB053	23SB054	23SB055	23SB056	23SB058
SAMPLE ID	23SS043-0002	23SS044-0002	23SS045-0002	23SS045-0002-D	23SS046-0002	23SS047-0002	23SS0480002	23SS049-0002	23SS050-0002	23SS053-0002	23SS054-0002	23SS055-0002	23SS056-0002	23SS058-0002
SAMPLE DATE	20140328	20140328	20140328	20140328	20140328	20140328	20140326	20140321	20140321	20140321	20140321	20140321	20140321	20140321
SAMPLE CODE	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO NORMAL	SO NORMAL	SO	SO NORMAL	SO	SO	SO	SO	SO	SO NORMAL	SO NORMAL	SO NORMAL	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS	SS 0	SS 0	SS 0
TOP DEPTH BOTTOM DEPTH	0	2	0	2	2	0 1	2	0	0	0	0	0	0 2	0
DIOXINS/FURANS (UG/KG)														
1,2,3,4,6,7,8,9-OCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8,9-OCDF	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDD	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,4,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDF	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
1,2,3,7,8,9-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.3.4.6.7.8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007 - HALFND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECED	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL PECDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL PECDF TOTAL TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HERBICIDES (UG/KG)	INA	INA	IVA	IVA	IVA	INA	INA	INA	IVA	INA	INA	INA	INA	IVA
2.4.5-T	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (SILVEX)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-D	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
METALS (MG/KG)														
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM COBALT	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COPPER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	1000	700	27	24	140	61	40	21	63	NA NA	NA NA	NA NA	NA NA	NA NA
MERCURY	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NICKEL	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VANADIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZINC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALS (UG/KG)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
ANTIMONY ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BERYLLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LITHIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NICKEL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM STLVED	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
<u>SILVER</u> THALLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VANADIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ZINC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MISCELLANEOUS PARAMETERS (%)	1		,						,					
ACTINOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AMOSITE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
ANTHOPHYLLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ASBESTOS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSOTILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CROCIDOLITE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
TREMOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	23SB043	23SB044		B045	23SB046	23SB047	23SB048	23SB049	23SB050	23SB053	23SB054	23SB055	23SB056	23SB058
SAMPLE ID SAMPLE DATE	23SS043-0002 20140328	23SS044-0002 20140328	23SS045-0002 20140328	23SS045-0002-D 20140328	23SS046-0002 20140328	23SS047-0002 20140328	23SS0480002 20140326	23SS049-0002 20140321	23SS050-0002 20140321	23SS053-0002 20140321	23SS054-0002 20140321	23SS055-0002 20140321	23SS056-0002 20140321	23SS058-0002 20140321
SAMPLE CODE	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	so	so	SO	so	so	SO	so	so	SO	so	so	so	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX TOP DEPTH	SS 0	SS	SS 0	SS 0	SS	SS 0	SS 0	SS	SS 0	SS 0	SS	SS 0	SS 0	SS
BOTTOM DEPTH	2	2	2	2	2	2	2	2	2	2	2	2	2	2
MISCELLANEOUS PARAMETERS (F)														
FLASHPOINT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (MG/	NA I	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (S.U.)	INA	INA	INA	IVA	IVA	INA	IVA	INA	INA	IVA	IVA	IVA	INA	IVA
PH	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/														
CYANIDE SULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ORGANOPHOSPHOROUS PESTICIDES		IVA	IVA	IVA	IVA	IVA	IVA	INA	IVA	IVA	IVA	IVA	IVA	IVA
DIMETHOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DISULFOTON	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA
ETHYL PARATHION FAMPHUR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHORATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA						
SULFOTEPP PCBS (MG/KG)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1242 AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1246 AROCLOR-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1260	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PESTICIDES/PCBS (UG/KG)														
1,1-DICHLOROETHENE 4,4'-DDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,4'-DDT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ALDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ALPHA-BHC ALPHA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1016	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1242 AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1260	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BETA-BHC CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DELTA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIELDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN II	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN SULFATE ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
ENDRIN ALDEHYDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN KETONE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA
GAMMA-BHC (LINDANE) GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
KEPONE METHOXYCHI OR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR PHORATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOXAPHENE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PETROLEUM HYDROCARBONS (MG/K														
DRO (C08-C28) DRO (C08-C34)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GASOLINE RANGE ORGANICS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
POLYCYCLIC AROMATIC HYDROCARE														
1-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0.038 U	0.041 U	0.037 U	0.035 U	0.039 U	0.0042 U	0.043 U	0.0043 U
2-METHYLNAPHTHALENE ACENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.038 U 0.038 U	0.041 U 0.082 J	0.037 U 0.037 U	0.035 U 0.035 U	0.039 U 0.039 U	0.0042 U 0.0042 U	0.043 U 0.043 U	0.0043 U 0.0043 U
ACENAPHT HENE ACENAPHTHYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.038 U	0.082 J 0.041 U	0.037 U	0.035 U	0.039 U	0.0042 U	0.043 U	0.0043 U
ANTHRACENE	NA	NA	NA	NA	NA	NA	0.038 U	0.21	0.037 UJ	0.035 U	0.039 U	0.0042 U	0.043 U	0.0043 U
BAP EQUIVALENT-HALFND	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0.087234	0.47911	0.36458	0.133888	0.22332	0.007653	0.22212	0.0051187
BAP EQUIVALENT-POS BENZO(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.064434 0.038 U	0.47911 0.41	0.36458 0.21 J	0.116388 0.059 J	0.20382 0.11	0.005343 0.0042 J	0.20062 0.068 J	0.0023 0.0043 U
BENZO(A)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.058 U	0.33	0.21 3	0.088	0.16	0.0042 J 0.0042 J	0.16	0.0043 U 0.0023 J
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	0.11	0.44	0.44 J	0.17	0.22	0.0067 J	0.23	0.0043 U
BENZO(G,H,I)PERYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.042 J	0.17	0.15	0.091	0.17	0.0042 U	0.23	0.0043 U
BENZO(K)FLUORANTHENE CHRYSENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.039 J 0.044 J	0.17 0.41	0.14 J 0.28 J	0.05 J 0.088	0.096 0.16	0.0043 J 0.01	0.071 J 0.11	0.0043 U 0.0043 U
SHILLSEITE	13/3	11/7	13/3	1 11/7	1177	13/3	U.U I I J	I 0.11	U.ZU J	0.000	0.10	0.01	0.11	0.0015 0

LOCATION	23SB043	23SB044	23S	B045	23SB046	23SB047	23SB048	23SB049	23SB050	23SB053	23SB054	23SB055	23SB056	23SB058
SAMPLE ID	23SS043-0002	23SS044-0002	23SS045-0002	23SS045-0002-D	23SS046-0002	23SS047-0002	23SS0480002	23SS049-0002	23SS050-0002	23SS053-0002	23SS054-0002	23SS055-0002	23SS056-0002	23SS058-0002
SAMPLE DATE SAMPLE CODE	20140328 NORMAL	20140328 NORMAL	20140328 ORIG	20140328 DUP	20140328 NORMAL	20140328 NORMAL	20140326 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL
MATRIX	SO	SO	SO	SO SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS 0	SS	SS 0	SS	SS	SS 0	SS	SS	SS 0	SS	SS	SS 0	SS	SS
TOP DEPTH BOTTOM DEPTH	2	0 2	2	0 2	0 2	2	0 2	0 2	2	0 2	2	0 2	0 2	0 2
DIBENZO(A,H)ANTHRACENE	NA NA	NA NA	NA	NA	NA NA	NA NA	0.038 U	0.049 J	0.058 J	0.035 U	0.039 U	0.0042 UJ	0.043 U	0.0043 U
FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.045 J	0.84	0.36 J	0.079	0.16	0.057	0.092	0.0047 J
FLUORENE INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.038 U 0.038 U	0.099 0.13	0.037 U 0.099	0.035 U 0.049 J	0.039 U 0.097	0.0042 U 0.0042 UJ	0.043 U 0.1	0.0043 U 0.0043 U
NAPHTHALENE	NA NA	NA NA	NA	NA	NA NA	NA NA	0.038 U	0.041 U	0.037 U	0.035 U	0.039 U	0.0042 U	0.043 U	0.0043 U
PHENANTHRENE	NA	NA	NA	NA	NA	NA	0.038 U	0.7	0.12	0.035 U	0.068 J	0.0071 J	0.043 U	0.0043 U
PYRENE SEMIVOLATILES (UG/KG)	NA	NA	NA	NA	NA	NA	0.038 U	0.62	0.32	0.084	0.15	0.011	0.087	0.0043 U
1,2,4,5-TETRACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROBENZENE 1,3,5-TRINITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3-DICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3-DINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE 1,4-NAPHTHOQUINONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-PHENYLENEDIAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6-TETRACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DIMETHYLPHENOL	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA
2,4-DINITROPHENOL 2,4-DINITROTOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,6-DICHLOROPHENOL	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-ACETYLAMINOFLUORENE 2-CHLORONAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-CHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				
2-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-NAPHTHYLAMINE 2-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-NITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-PICOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,3'-DICHLOROBENZIDINE 3,3'-DIMETHYLBENZIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-METHYLCHOLANTHRENE	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
3-METHYLPHENOL 3-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,6-DINITRO-2-METHYLPHENOL	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-AMINOBIPHENYL	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
4-BROMOPHENYL PHENYL ETHER 4-CHLORO-3-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROPHENYL PHENYL ETHER	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA
4-METHYLPHENOL 4-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROANILINE 4-NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROQUINOLINE-1-OXIDE	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA
5-NITRO-O-TOLUIDINE 7,12-DIMETHYLBENZ(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A,A-DIMETHYLPHENETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACENAPHTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHYLENE ACETOPHENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANTHRACENE ARAMITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(K)FLUORANTHENE	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
BENZYL ALCOHOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BIS(2-CHLOROETHOXY)METHANE BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROISOPROPYL)ETHER BIS(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BUTYL BENZYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZILATE CHRYSENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIALLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
·														

LOCATION	23SB043	23SB044	2351	B045	23SB046	23SB047	23SB048	23SB049	23SB050	23SB053	23SB054	23SB055	23SB056	23SB058
SAMPLE ID	2355043-0002	23SS044-0002	23SS045-0002	23SS045-0002-D	2355046-0002	23SS047 23SS047-0002	23SS0480002	2355049	23SS050-0002	23SS053-0002	23SS054-0002	23SS055-0002	2355056-0002	2355058-0002
SAMPLE DATE	20140328	20140328	20140328	20140328	20140328	20140328	20140326	20140321	20140321	20140321	20140321	20140321	20140321	20140321
SAMPLE CODE	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO.	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX TOP DEPTH	SS	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS	SS 0	SS 0	SS
BOTTOM DEPTH	2	2	2	0 1	2	2	2	2	2	2	2	2	2	2
DIBENZO(A,H)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBENZOFURAN	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
DIETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIMETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-BUTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIPHENYLAMINE ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBUTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROCYCLOPENTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
INDENO(1,2,3-CD)PYRENE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN ISODHODONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOPHORONE ISOSAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIMETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSO-DI-N-BUTYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSO-DI-N-PROPYLAMINE	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE N-NITROSOMORPHOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOPIPERIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOPYRROLIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENACETIN	NA 	NA NA	NA	NA NA	NA NA	NA	NA 	NA 	NA	NA NA	NA 	NA	NA NA	NA
PHENANTHRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENOL PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SAFROLE	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA
THIONAZIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP HERBICIDES (UG/L)														
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP METALS (UG/L)	NIA .	NIA.	N/A	NIA .	N/A	N/A	N/A	N/A	NIA.	N/A	N/A	N/A	N/A	NIA.
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MERCURY	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP MISCELLANEOUS (UG/L)														
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L)	NA	NA	NA	NA	NΙΔ	NA	NA	NA	NIA	NA	NA	NA	NA	NIA
ALPHA-CHLORDANE ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
HEPTACHLOR EPOXIDE	NA	INA												
HEPTACHLOR EPOXIDE METHOXYCHLOR	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

100 12 10	LOCATION	23SB043	23SB044	235	PO/E	23SB046	23SB047	23SB048	23SB049	23SB050	23SB053	23SB054	23SB055	23SB056	23SB058
West															
STREECE MODRAL MO															
Column C															
ORDERATE NOTIFICAL NOTIF															
Second Column Second Colum															
Company Comp		_	-		-		-		-	-	-	_		_	
Color Colo			0			0			0			0			
THE PROPERTY SECTION AS A SECTI		_	2	2	2	2	2	2	2	2	2	2	2	2	2
A		_	_		_	1	_	Ī	_		_	Ī	1	Ī	_
Section Sect		NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Color Colo								• • • • • • • • • • • • • • • • • • • •							
A PARTICULAR TABLE	BENZENE				NA										
14 15 15 15 15 15 15 15															
1.000 1.00	CHLOROBENZENE	NA	NA		NA	NA		NA	NA		NA	NA		NA	NA
TREACHERONISMS A. M. M. M. M. M. M. M. M. M. M. M. M. M.	CHLOROFORM	NA NA			NA		NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
Column C	TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Column C	TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.5785100000000000000000000000000000000000	VOLATILES (MG/KG)														
13.27975926000000000000000000000000000000000000	1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.270507.00000000000000000000000000000000	1,1,1-TRICHLOROETHANE	NA	NA		NA	NA		NA	NA		NA	NA		NA	NA
ACCIDINATION DA	1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.0004.00000000000000000000000000000000	1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2.4 TRIFFE CHARGE SEA SEA SEA SEA SEA SEA SEA SEA SEA SE	1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Company	1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
- 2-DEREDOPTIONSE - MA. NA. NA. NA. NA. NA. NA. NA. NA. NA. N	1,2,3-TRICHLOROPROPANE	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-001-001-001-001-001-001-001-001-001-00	1,2-DIBROMO-3-CHLOROPROPANE														
2-001-000000000000000000000000000000000	1,2-DIBROMOETHANE							• • • • • • • • • • • • • • • • • • • •							
HE PACKER NA NA NA NA NA NA NA NA NA NA NA NA NA	1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SHEWANDER SA	1,2-DICHLOROPROPANE	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHICAGORDETES MA	2-BUTANONE														
HEITHY LYER AND NE	2-HEXANONE														
ESTORE NA NA NA NA NA NA NA NA NA NA NA NA NA															
CETOMETRIE NA NA NA NA NA NA NA NA NA NA NA NA NA															
CROCKET NA NA NA NA NA NA NA NA NA NA NA NA NA								• • • • • • • • • • • • • • • • • • • •							
CEMPONTRILE NA NA NA NA NA NA NA NA NA NA NA NA NA								• • • • • • • • • • • • • • • • • • • •							
SINCEPIE NA NA NA NA NA NA NA NA NA NA NA NA NA															
REPRINCE MA MA MA MA MA NA NA NA															
REMODEREM NA NA NA NA NA NA NA NA NA NA NA NA NA								1471							
ROMONETHANE NA NA NA NA NA NA NA NA NA NA NA NA NA															
ARRON TETRACTURE NA NA NA NA NA NA NA NA NA NA NA NA NA															
ABRONT TERMOTHORIDE NA NA NA NA NA NA NA NA NA N								• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						
HIGROEPENTENE								• • • • • • • • • • • • • • • • • • • •							
HLORDETIMANE															
HLORDECHANE															
HIGROFORM								• • • • • • • • • • • • • • • • • • • •							
HIGKORFIFANE															
HIGNOPERIER															
ISS-12-DIGHOROPETHENE NA NA NA NA NA NA NA NA NA NA NA NA NA								• • • • • • • • • • • • • • • • • • • •							
15-13-01/CHICROPROPENE NA NA NA NA NA NA NA NA NA NA NA NA NA	CIS-1,2-DICHLOROETHENE														
DIBROMOMETHANE	CIS-1,3-DICHLOROPROPENE														
NA NA NA NA NA NA NA NA	DIBROMOMETHANE														
THY_METHACRY_IATE NA NA NA NA NA NA NA NA NA NA NA NA NA	DICHLORODIFLUOROMETHANE							• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						
THYLBENZENE NA NA NA NA NA NA NA NA NA NA NA NA NA	ETHYL METHACRYLATE							• • • • • • • • • • • • • • • • • • • •							
SOBUTANOL	ETHYLBENZENE				NA			NA			NA	NA		NA	
METHACRYLONITRILE	ISOBUTANOL	NA NA		NA	NA		NA	NA	NA.	NA.	NA_	NA	NA NA	NA	NA
METHYL IODIDE	METHACRYLONITRILE	NA			NA			NA			NA			NA	NA
METHYLENE CHLORIDE	METHYL IODIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PROPIONITRILE NA NA NA NA NA NA NA NA NA N	METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TYRENE NA NA NA NA NA NA NA NA NA NA NA NA NA	METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHENE	PROPIONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OLUENE	STYRENE	NA		NA	NA		NA	NA			NA	NA	NA	NA	NA
TOTAL XYLENES	TETRACHLOROETHENE				NA										
RAINS-1,2-DICHLOROETHENE	TOLUENE														
TRANS-1,3-DICHLOROPROPENE NA	TOTAL XYLENES														
RANS-1,4-DICHLORO-2-BUTENE NA ""><td>TRANS-1,2-DICHLOROETHENE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	TRANS-1,2-DICHLOROETHENE														
RICHLOROETHENE NA NA NA NA NA NA NA NA NA NA NA NA NA	TRANS-1,3-DICHLOROPROPENE														
RICHLOROFLUOROMETHANE NA NA NA NA NA NA NA NA NA NA NA NA NA	TRANS-1,4-DICHLORO-2-BUTENE														
VINYL ACETATE NA NA NA NA NA NA NA NA NA NA NA NA NA	TRICHLOROETHENE							• • • • • • • • • • • • • • • • • • • •							
	TRICHLOROFLUOROMETHANE														
/INYLCHLORIDE NA NA NA NA NA NA NA N	VINYL ACETATE														
	VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	23SB043	23SB044	23S	B045	23SB046	23SB047	23SB048	23SB049	23SB050	23SB053	23SB054	23SB055	23SB056	23SB058
SAMPLE ID	23SS043-0002	23SS044-0002	23SS045-0002	23SS045-0002-D	23SS046-0002	23SS047-0002	23SS0480002	23SS049-0002	23SS050-0002	23SS053-0002	23SS054-0002	23SS055-0002	23SS056-0002	23SS058-0002
SAMPLE DATE	20140328	20140328	20140328	20140328	20140328	20140328	20140326	20140321	20140321	20140321	20140321	20140321	20140321	20140321
SAMPLE CODE	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	so	SO	SO	SO	SO	SO	SO	so	SO	SO	so	so	SO	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BOTTOM DEPTH	2	2	2	2	2	2	2	2	2	2	2	2	2	2
VOLATILES (UG/KG)														
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DIOXANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROMETHANE	NA	NA	NA	NA 	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA
CHLOROPRENE	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHACRYLATE ETHYLBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
M+P-XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYLENE CHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O-XYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLORONITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL ACETATE	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
		•	•	•				•	•	•	•	•		

		1				T.						
LOCATION	23SB059	23SB062		23SB063	•		23SB064	1	23SB065		23SB066	•
SAMPLE ID	23SS059-0002	23SS062-0002	23SS0630002	23SB0630204	23SB0630406	23SS064-0002	23SB064-0204	23SB064-0406	23SS065-0002	23SS066-0002	23SB066-0204	23SB066-0406
SAMPLE DATE	20140321	20140321	20140326	20140326	20140326	20140321	20140321	20140321	20140321	20140321	20140321	20140321
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO.	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SB	SS	SB	SB	SS	SS	SB	SB
TOP DEPTH	0	0	0	2 4	4	0	2	4	0	0	2	4
DIOXINS/FURANS (UG/KG)		2		4	0		4	0			4	0
1,2,3,4,6,7,8,9-OCDD	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
1,2,3,4,6,7,8,9-OCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDD	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-HPCDF	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HXCDF	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
1,2,3,6,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8,9-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3,7,8-PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,7,8-PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,7,8-TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TEQ WHO-2007 - HALFND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HPCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL HXCDF	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDF	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDD	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HERBICIDES (UG/KG)		114	110	***	N.A.	110	N.A.	214	214	110	***	N.A.
2,4,5-T	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TP (SILVEX) 2,4-D	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METALS (MG/KG)	NA	NA	NA	INA	NA	NA	NA	NA	INA	NA	INA	NA
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BERYLLIUM	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COBALT	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
COPPER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NICKEL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VANADIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZINC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALS (UG/KG)												
ANTIMONY	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
BERYLLIUM	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
CADMIUM	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CORRER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COPPER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LITHIUM MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NICKEL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THALLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VANADIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ZINC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MISCELLANEOUS PARAMETERS (%)		19/3	INO	I W/CI	IVO	IVA	IVO	INA	ING	19/3	IVO	IVO
ACTINOLITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AMOSITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANTHOPHYLLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ASBESTOS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHRYSOTILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CROCIDOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TREMOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

LOCATION SAMPLE ID	23SB059 23SS059-0002	23SB062 23SS062-0002	23SS0630002	23SB063 23SB0630204	23SB0630406	235S064-0002	23SB064 23SB064-0204	23SB064-0406	23SB065 23SS065-0002	23SS066-0002	23SB066 23SB066-0204	23SB066-0406
SAMPLE DATE SAMPLE CODE	20140321 NORMAL	20140321 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL	20140321 NORMAL
MATRIX	NORMAL SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX TOP DEPTH	SS 0	SS 0	SS 0	SB 2	SB 4	SS 0	SB 2	SB 4	SS 0	SS 0	SB 2	SB 4
BOTTOM DEPTH	2	2	2	4	6	2	4	6	2	2	4	6
MISCELLANEOUS PARAMETERS (F) FLASHPOINT	NA	NA	NA NA	NA	NA	NA	NIA	NA	NA NA	NA NA	NA NA	N/A
MISCELLANEOUS PARAMETERS (MG/	NA	INA	INA	INA	INA	NA	NA	NA	INA INA	INA	INA	NA
SULFATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (S.U.)	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA I
MISCELLANEOUS PARAMETERS (UG/I		TVA	TVA	IVA	IVA	IVA	IVA	IVA	NA .	IVA		IVA
CYANIDE SULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ORGANOPHOSPHOROUS PESTICIDES	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
DIMETHOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DISULFOTON ETHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FAMPHUR	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL PARATHION	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHORATE PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SULFOTEPP	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
PCBS (MG/KG) AROCLOR-1016	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
AROCLOR-1010 AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1242 AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1260 PESTICIDES/PCBS (UG/KG)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE 4,4'-DDT	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ALDRIN	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
ALPHA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ALPHA-CHLORDANE AROCLOR-1016	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232 AROCLOR-1242	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR 1242 AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1260 BETA-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DELTA-BHC DIELDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDOSULFAN II	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN SULFATE ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ENDRIN ALDEHYDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN KETONE GAMMA-BHC (LINDANE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE KEPONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHORATE TOXAPHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PETROLEUM HYDROCARBONS (MG/K	IVA	INA	IVA	INA	IVA	IVA	INA	INA	INA	INA	IVA	INA
DRO (C08-C28)	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
DRO (C08-C34) GASOLINE RANGE ORGANICS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
POLYCYCLIC AROMATIC HYDROCARE												
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	0.039 U 0.039 U	0.037 U 0.037 U	0.039 U 0.039 U	0.041 U 0.041 U	0.042 U 0.042 U	0.04 U 0.04 U	0.038 UJ 0.038 UJ	0.039 UJ 0.039 UJ	0.21 0.4	0.041 U 0.041 U	0.042 UJ 0.042 UJ	0.0041 UJ 0.0041 J
ACENAPHTHENE	0.039 U	0.037 U	0.039 U	0.041 U	0.042 U	0.04 U	0.038 UJ	0.039 UJ	1.5	0.041 U	0.042 UJ	0.0041 J 0.0041 UJ
ACENAPHTHYLENE	0.039 U	0.037 U	0.039 U	0.041 U	0.042 U	0.04 U	0.038 UJ	0.039 UJ	0.15	0.041 U	0.042 UJ	0.0041 UJ
ANTHRACENE BAP EOUIVALENT-HALFND	0.043 J 0.2573	0.037 U 0.21344	0.039 U 0.49245	0.041 U 0.15956	0.042 U 0.053731	0.041 J 0.19484	0.038 UJ 0.17868	0.039 UJ 0.0475645	3.3 6.794	0.041 U 0.12557	0.042 UJ 0.063931	0.0041 UJ 0.0105773
BAP EQUIVALENT-POS	0.2378	0.21344	0.49245	0.13906	0.0283	0.17484	0.15968	0.022	6.794	0.10302	0.0385	0.0085068
BENZO(A)ANTHRACENE	0.12	0.045 J	0.28	0.081 J	0.042 U	0.07 J	0.093 J	0.039 UJ	5.7 5	0.065 J	0.042 UJ	0.0046 J
BENZO(A)PYRENE BENZO(B)FLUORANTHENE	0.18 0.35	0.09 0.17	0.34 0.56	0.11 0.16	0.024 J 0.043 J	0.14 0.21	0.12 J 0.21 J	0.022 J 0.039 UJ	8.4	0.083 J 0.13	0.033 J 0.055 J	0.0062 J 0.01 J
BENZO(G,H,I)PERYLENE	0.16	0.15	0.22	0.076 J	0.042 U	0.091	0.1 J	0.039 UJ	2.3	0.045 J	0.042 UJ	0.012 J
BENZO(K)FLUORANTHENE CHRYSENE	0.13	0.057 J	0.21	0.066 J	0.042 U 0.042 H	0.13	0.078 J	0.039 UJ	2.8	0.042 J	0.042 UJ 0.042 UJ	0.0041 UJ 0.0068 1
CHRYSENE	0.2	0.07 J	0.35	0.1	0.042 U	0.14	0.1 J	0.039 UJ	6	0.1	0.042 UJ	0.0068 J

LOCATION SAMPLE ID SAMPLE DATE	23SB059 23SS059-0002 20140321	23SB062 23SS062-0002 20140321	23SS0630002 20140326	23SB063 23SB0630204 20140326	23SB0630406 20140326	23SS064-0002 20140321	23SB064 23SB064-0204 20140321	23SB064-0406 20140321	23SB065 23SS065-0002 20140321	23SS066-0002 20140321	23SB066 23SB066-0204 20140321	23SB066-0406 20140321
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SB	SS	SB	SB	SS	SS	SB	SB
TOP DEPTH	0	0	0	2	4	0	2	4	0	0	2	4
BOTTOM DEPTH DIBENZO(A,H)ANTHRACENE	0.039 U	0.095	0.052 J	0.041 U	0.042 U	0.04 UJ	0.038 UJ	0.039 UJ	0.22	0.041 U	0.042 UJ	0.0041 UJ
FLUORANTHENE	0.22	0.083	0.28	0.074 J	0.042 U	0.17	0.1 J	0.039 UJ	14	0.21	0.064 J	0.012 J
FLUORENE	0.039 U	0.037 U	0.039 U	0.041 U	0.042 U	0.04 U	0.038 UJ	0.039 UJ	1.7	0.041 U	0.042 UJ	0.0041 UJ
INDENO(1,2,3-CD)PYRENE NAPHTHALENE	0.093	0.063 J	0.14 J	0.042 J	0.042 U	0.054 J	0.085 J	0.039 UJ	1.3	0.041 U	0.042 UJ	0.0084 J
	0.039 U	0.037 U	0.039 U	0.041 U	0.042 U	0.04 U	0.038 UJ	0.039 UJ	1.7	0.041 U	0.042 UJ	0.0045 J
PHENANTHRENE	0.039 U	0.037 U	0.059 U	0.041 U	0.042 U	0.04 U	0.038 UJ 0.032 J	0.039 UJ	1.7	0.12	0.042 0J 0.032 J	0.0045 J
PYRENE	0.21	0.082	0.53 J	0.15 J	0.042 U	0.16	0.13 J	0.039 UJ	10	0.2	0.066 J	0.013 J
SEMIVOLATILES (UG/KG)												
1,2,4,5-TETRACHLOROBENZENE 1,2,4-TRICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROBENZENE	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3,5-TRINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-DICHLOROBENZENE	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
1,3-DINITROBENZENE 1,4-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-NAPHTHOQUINONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-PHENYLENEDIAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6-TETRACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,6-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DIMETHYLPHENOL	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DINITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-ACETYLAMINOFLUORENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-CHLORONAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-CHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-PICOLINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DICHLOROBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DIMETHYLBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLCHOLANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHTEPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-AMINOBIPHENYL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-BROMOPHENYL PHENYL ETHER 4-CHLORO-3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROPHENYL PHENYL ETHER	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYLPHENOL	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-NITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-NITROPHENOL 4-NITROQUINOLINE-1-OXIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5-NITRO-O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A,A-DIMETHYLPHENETHYLAMINE ACENAPHTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETOPHENONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARAMITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(K)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZYL ALCOHOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BIS(2-CHLOROETHOXY)METHANE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROISOPROPYL)ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BUTYL BENZYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZILATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIALLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	23SB059	23SB062		23SB063			23SB064		23SB065		23SB066	
SAMPLE ID	23SS059-0002	23SS062-0002	23SS0630002	23SB063 23SB0630204	23SB0630406	23SS064-0002	23SB064 23SB064-0204	23SB064-0406	23SS065-0002	23SS066-0002	23SB066-0204	23SB066-0406
SAMPLE ID												
I =	20140321	20140321	20140326	20140326	20140326	20140321	20140321	20140321	20140321	20140321	20140321	20140321
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO.	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SB	SS	SB	SB	SS	SS	SB	SB
TOP DEPTH	0	0	0	2	4	0	2	4	0	0	2	4
BOTTOM DEPTH	2	2	2	4	6	2	4	6	2	2	4	6
DIBENZO(A,H)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBENZOFURAN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIMETHYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-BUTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIPHENYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHANE SULFONATE	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA
FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA			NA NA								
HEXACHLOROBENZENE		NA NA	NA		NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBUTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROCYCLOPENTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
INDENO(1,2,3-CD)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISODRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOPHORONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOSAFROLE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHANE SULFONATE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
NAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA		NA NA	NA NA	NA NA			NA NA	NA NA	NA NA	NA NA
N-NITROSODIETHYLAMINE			NA NA				NA NA	NA NA				
N-NITROSODIMETHYLAMINE	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
N-NITROSO-DI-N-BUTYLAMINE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA
N-NITROSO-DI-N-PROPYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIPHENYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOMETHYLETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOMORPHOLINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPIPERIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPYRROLIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENACETIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENANTHRENE												
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENOL	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
PRONAMIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PYRIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SAFROLE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THIONAZIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP HERBICIDES (UG/L)												
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP METALS (UG/L)												
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA											
MERCURY		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SELENIUM	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP MISCELLANEOUS (UG/L)												
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L)												
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA
GAMMA-BHC (LINDANE)	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOXAPHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

SAMPLE DATE SAMPLE CODE MATRIX SAMPLE TYPE SUBMATRIX TOP DEPTH BOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE 2-BUTANONE BENZENE CHLOROETHANE NA CARBON TETRACHLORIDE NA CHLOROFORM TETRACHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE N	RMAL 60 RMAL 55 S 0 2	23SS062-0002 20140321 NORMAL SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SS0630002 20140326 NORMAL SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SB0630204 20140326 NORMAL SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SB0630406 20140326 NORMAL SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SS064-0002 20140321 NORMAL SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SB064-0204 20140321 NORMAL SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SB064-0406 20140321 NORMAL SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SS065-0002 20140321 NORMAL SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SS066-0002 20140321 NORMAL SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SB066-0204 20140321 NORMAL SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	23SB066-0406 20140321 NORMAL SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
SAMPLE CODE MATRIX SAMPLE TYPE SUBMATRIX TOP DEPTH BOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE BENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE CHLOROETHANE NA TETRACHLOROETHANE NA TETRACHLOROETHANE NA TRICHLOROETHENE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOR	RMAL 60 RMAL 55 S 0 2	NORMAL	NORMAL	NORMAL SO	NORMAL SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SO NORMAL SS NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL	NORMAL SO NORMAL SS NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL	NORMAL	NORMAL SO NORMAL SO NORMAL S HAT S H
MATRIX SAMPLE TYPE SUBMATRIX TOP DEPTH BOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE NA BENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA TETRACHLOROETHANE NA TRICHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIGHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DI	60 RMAL 65S 50 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 4 6 6	SO NORMAL SS 0 2 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
MATRIX SAMPLE TYPE SUBMATRIX TOP DEPTH BOTTOM DEPTH T.CLP VOLATILES (UG/L) 1,2-DICHLOROETHANE NA BENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA TETRACHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA 1,1,1-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-TRICHLOROETHANE NA 1,2-TRICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE	60 RMAL 65S 50 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 4 6 6	SO NORMAL SS 0 2 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	SO NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
SAMPLE TYPE SUBMATRIX TOP DEPTH GOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE NA 2-BUTANONE NA ENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA TETRACHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA T,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPENE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPENE NA 1,2-DICHLOROPROPANE NA 1,2-DICHL	RMAL SS 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SS 0 2 2	NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL	NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SS 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	NORMAL
SUBMATRIX TOP DEPTH BOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE NA 2-BUTANONE NA BENZENE NA CARBON TETRACHLORIDE NA CHLOROFORM NA TETRACHLOROETHANE NA TETRACHLOROETHANE NA TRICHLOROETHANE NA TRICHLOROETHANE NA TAILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIGHLOROETHANE NA 1,2-DIGHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIGHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 3-CHLOROPROPENE NA 3-CHLOROPROPENE NA ACETONIE NA ACETONIE NA ACETONIE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CARBON TETRACHLORIDE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE	SS 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SS 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SS 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA N	SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	SS 0 2 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	SB 2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA N	SB 4 6 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	SS 0 2 2	SS 0 2 2	SB 2 4 4	SB 4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
TOP DEPTH BOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE NA 2-BUTANONE BENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROFORM NA TETRACHLOROETHANE I,1,1-TRICHLOROETHANE I,1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1		0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	4 6 NA NA NA NA NA NA NA NA NA NA	0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	2 4 NA NA NA NA NA NA NA NA NA NA NA NA NA	4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA	0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA	2 4 NA NA NA NA NA NA NA NA NA NA	4 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
BOTTOM DEPTH TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE NA BENZENE NA CARBON TETRACHLORIDE NA TETRACHLOROETHANE NA TETRACHLOROETHANE NA TETRACHLOROETHANE NA TRICHLOROETHENE NA TRICHLOROETHENE NA TAILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-TRICHLOROETHANE NA 1,2-DISROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIGHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHLOROETHENE NA 1,2-DICHL		2 NA NA NA NA NA NA NA NA NA N	2 NA NA NA NA NA NA NA NA NA N	4 NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	2 NA NA NA NA NA NA NA NA NA N	NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	2 NA NA NA NA NA NA NA NA NA N	2 NA NA NA NA NA NA NA NA NA N	4 NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
TCLP VOLATILES (UG/L) 1,2-DICHLOROETHANE A-BUTANONE BENZENE NA CARBON TETRACHLORIDE CHLOROBENZENE NA CHLOROFORM TETRACHLOROETHANE NA TRICHLOROETHENE NA TRICHLOROETHENE NA TRICHLOROETHANE 1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA ACETONE NA ACETONE NA ACETONE NA ACETONE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROPROPENE NA CHLOROPROPENE NA CHLOROPROPENE NA CHLOROFORM NA CARBON DISULFIDE NA CHLOROETHANE NA CHLOROPENE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
1,2-DICHLOROETHANE NA 2-BUTANONE NA BENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROFORM NA TETRACHLOROETHANE NA TETRACHLOROETHANE NA TILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-BITHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONIT ACRUSTICE NA ACROLEIN NA ACRYLONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZONE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROBENZENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE NA CHLOR		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Z-BUTANONE BENZENE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM TETRACHLOROETHANE IRICHLOROETHENE NA TRICHLOROETHENE NA 1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DIGHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 3-CHLOROPROPANE NA ACETONE NA ACETONIE NA ACRYLONITRILE NA BROMOFORM NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROBENE NA CHLOROPROPENE NA CHLOROPROPENE NA CHLOROPORM NA CHLOROPENE NA CHLOROPIBROMOETHANE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
BENZENE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROFORM NA TETRACHLOROETHANE NA TEICHLOROETHENE NA VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-TRICHLOROETHANE NA 1,2-TRICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-THANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPRO		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM TETRACHLOROETHANE NA TRICHLOROETHENE NA VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA ACETONE NA ACETONE NA ACETONE NA ACETONE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROPROPENE NA CHLOROPROPENE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROPROPENE NA CHLOROPROPENE NA CHLOROPROPENE NA CHLOROBIBROMOMETHANE NA CHLOROBIBROMOMETHANE NA CHLOROPENE NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
CHLOROBENZENE CHLOROFORM CHLOROFORM NA TETRACHLOROETHANE TRICHLOROETHANE NA VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 3-CHLOROPROPANE NA 3-CHLOROPROPANE NA 3-CHLOROPROPANE NA ACETONE NA ACETONE NA ACETONITRILE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON TETRACHLORIDE NA CARBON DISULFIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROFORM NA CHLOROFORM NA CHLOROFENE NA CHLOROFORM NA CHLOROPENE NA CHLOROFENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
CHLOROFORM NA TETRACHLOROETHANE NA TRICHLOROETHENE NA VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TRICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPRO		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
CHLOROFORM TETRACHLOROETHANE TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 3-CHLOROPROPANE NA 4-METHYL-2-PENTANONE ACETONITRILE NA ACETONITRILE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMOFORM NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROPROPENE NA CHLOROPROPENE NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERE NA CHLOROPERE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
TETRACHLOROETHANE TRICHLOROETHENE NA VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE NA 1,1,1-TRICHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1,2-TETRACHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHENE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOFHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROP		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA
TRICHLOROETHENE VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-Z-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-THANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 2-BUTANONE NA 2-BUTANONE NA 3-CHLOROPROPENE NA ACETONE NA ACETONE NA ACETONITRILE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROPENE NA CHLOROPROPENE NA CHLOROFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
VOLATILES (MG/KG) 1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-JICHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 3-CHLOROPROPANE NA 3-CHLOROPROPENE NA ACETONE NA ACETONITRILE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMOFORM NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPROPENE NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHENE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,1-DICHLOROETHANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 3-CHLOROPROPANE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONITRILE NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMOFORM NA CARBON TETRACHLORIDE NA CARBON TETRACHLORIDE NA CHLOROEDBROMOMETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROFENE NA CHLOROPERE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPENE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPETHENE NA 1,2-		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE NA 1,2-TRICHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA CARBON TETRACHLORIDE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROPENE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CIS-1,2-DICHLOROETHENE NA CIS-1,2-DICHLOROETHENE		NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA
1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-J-TRICHLOROPETHENE 1,2,3-TRICHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON TISULFIDE NA CHLOROBENZENE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
1,1-DICHLOROETHANE NA 1,1-DICHLOROETHENE NA 1,2,3-TRICHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-BUTANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONE NA ACCETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON TERRACHLORIDE NA CARBON TERRACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
1.1-DICHLOROETHANE NA 1,1-DICHLOROETHENE NA 1,2,3-TRICHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMOETHANE NA 1,2-DICHLOROPETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA BROMOFORM NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROFTHANE NA CHLOROFORM NA CHLOROPRENE NA CHLOROPRENE NA CHLOROPRENE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPERENE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
1,1-DICHLOROETHENE NA 1,2,3-TRICHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DIBROMO-3-CHLOROPROPANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-BUTANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONIE NA ACETONITRILE NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOPORM NA BROMOPORM NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA
1,2,3-TRICHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-BUTANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONE NA ACETONIE NA ACRYLONITRILE NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE NA CHLOROPERE		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CARBON TETRACHLORIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CIS-1,2-DICHLOROETHENE		NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA	NA	NA	NA
1,2-DIBROMOETHANE NA 1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACRYLONITRILE NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON TERACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPERE		NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA	NA NA	NA	NA	NA			
1,2-DICHLOROETHANE NA 1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-BUTANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMODICHLOROMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA	NA				IVA	NA NA	NA N
1,2-DICHLOROPROPANE NA 2-BUTANONE NA 2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONE NA ACETORIE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROPENZENE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CHLOROPENE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA NA NA	NA NA NA NA	NA NA NA			ı NA	I NIA	I NIA			
2-BUTANONE NA 2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACCETONE NA ACCETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROETHANE NA CHLOROFORM NA CHLOROPRENE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NA NA NA NA	NA NA NA	NA NA	NA				NA	NA	NA	NA
2-HEXANONE NA 3-CHLOROPROPENE NA 4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLOROBENZENE NA CHLOROFORM NA CHLOROFORM NA CHLOROPETHANE NA CHLOROPRENE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA NA NA	NA NA	NA		NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	1	NA NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA	1	NA		NIA.	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE NA ACETONE NA ACETONITRILE NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA	1	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE NA ACETONITRILE NA ACROLEIN NA ACROLEIN NA ACRYLONITRILE NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFETHANE NA CHLOROFETHANE NA CHLOROPERNE NA CHLOROPERNE NA CHLOROPERNE NA	١			NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE NA ACROLEIN NA ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFITHANE NA CARBON DISULFIDE NA CARBON DISULFIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFITHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFTHANE NA CHLOROFTHANE NA CHLOROFTHANE NA CHLOROFTHANE NA CHLOROFTHANE NA CHLOROPRENE NA CHLOROPRENE NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN NA ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON TERACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA CHLOROPETHANE NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE NA BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPRENE NA CHLOROFORM NA CHLOROPRENE NA CHLOROPRENE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA							NA NA					
BENZENE NA BROMODICHLOROMETHANE NA BROMOFORM NA BROMOFORM NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROFORM NA CHLOROPERNE NA CHLOROFORM NA CHLOROFORM NA CHLOROPERNE NA CHLOROPERNE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA NA		NA	NA NA	NA NA	NA	NA
BROMODICHLOROMETHANE NA BROMOFORM NA BROMOMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM NA BROMOMETHANE NA CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFTHANE NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE NA CARBON DISULFIDE NA CARBON TERACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON DISULFIDE NA CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE NA CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROFORM NA CHLOROMETHANE NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA	١	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE NA CHLORODIBROMOMETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE NA CHLOROETHANE NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
CHLOROETHANE NA CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM NA CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA												
CHLOROMETHANE NA CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE NA CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
CIS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CIC 1 3 DICH ODODDODENE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CIS-1,3-DICHLOROPROPENE NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBROMOMETHANE NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE NA		NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHACRYLATE NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
									• • • • • • • • • • • • • • • • • • • •			
ISOBUTANOL NA		NA	NA	NA	NA NA	NA	NA	NA	NA	NA ***	NA	NA
METHACRYLONITRILE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL IODIDE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHACRYLATE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PROPIONITRILE NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
STYRENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHENE NA		NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
				NA NA								
		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE NA	١	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE NA	1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VINYL ACETATE NA	\ \ \		13/7	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
VINYL CHLORIDE NA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NA NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

LOCATION SAMPLE ID SAMPLE DATE	23SB059 23SS059-0002 20140321	23SB062 23SS062-0002 20140321	23SS0630002 20140326	23SB063 23SB0630204 20140326	23SB0630406 20140326	23SS064-0002 20140321	23SB064 23SB064-0204 20140321	23SB064-0406 20140321	23SB065 23SS065-0002 20140321	23SS066-0002 20140321	23SB066 23SB066-0204 20140321	23SB066-0406 20140321
SAMPLE CODE MATRIX	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO	NORMAL SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SS	SB	SB	SS	SB	SB	SS	SS	SB	SB
TOP DEPTH	0	0	0	2	4	0	2	4	0	0	2	4
BOTTOM DEPTH VOLATILES (UG/KG)	2	2	2	4	6	2	4	6	2	2	4	6
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-DICHLOROETHENE 1,2,3-TRICHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMO-3-CHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMOETHANE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
1,4-DIOXANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL 2-BUTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-HEXANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZENE BROMODICHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA
ETHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
M+P-XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL IODIDE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
METHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYLENE CHLORIDE O-XYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLORONITROBENZENE	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
STYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VINYL ACETATE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION		23SB067			23SB068			23SB069			23SB070	•
SAMPLE ID	23SS067-0002	23SS067-0002-D	23SS067-0204	23SS068-0002	23SB068-0204	23SB068-0406	23SS0690002	23SB0690204	23SB0690406	23SS0700002	23SB0700204	23SB0700406
SAMPLE DATE	20140321	20140321	20140321	20140321	20140321	20140321	20140326	20140326	20140326	20140326	20140326	20140326
SAMPLE CODE	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO.	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SS	SB	SB	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	0	2	0	2	4	0	2	4	0	2	4
BOTTOM DEPTH	2	2	4	2	4	6	2	4	6	2	4	6
DIOXINS/FURANS (UG/KG)	N/A	NIA.	N/A	N/A	NIA.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2,3,4,6,7,8,9-OCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8,9-OCDF 1,2,3,4,6,7,8-HPCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,0,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1.2.3.6.7.8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8,9-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,6-FECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.3.4.6.7.8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.3.4.7.8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,7,8-TCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TEQ WHO-2007 - HALFND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HPCDD	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HXCDD	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA
TOTAL HXCDF	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA
TOTAL PECDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PECDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL TCDF	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HERBICIDES (UG/KG)												
2,4,5-T	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALS (MG/KG)												
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NICKEL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
THALLIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VANADIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZINC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METALS (UG/KG)	***		***	***	*1*	***	***	***	***	***	***	***
ANTIMONY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ARSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BARIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BERYLLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CORRER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
COPPER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LITHIUM MERCURY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA	NA NA	NA NA	
NICKEL				NA NA	NA NA		NA NA	NA NA		NA NA		NA NA
SELENIUM	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA
SILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THALLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TIN	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA		NA NA	NA NA	NA NA	NA NA
	NA NA			NA NA		NA NA		NA NA			NA NA	
VANADIUM ZINC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MISCELLANEOUS PARAMETERS (%		IVA	IVA	IVA	IVA	INA	IVA	NA	INA	IVA	INA	IVA
		NIA	NIA	NIA	NI A	NIA	NIA	NIA	NIA	NIA	NIA	NIA
ACTINOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AMOSITE ANTHORNY LITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANTHOPHYLLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ASBESTOS CHRYSOTILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CROCIDOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TREMOLITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

LOCATION SAMPLE ID SAMPLE DATE SAMPLE CODE	23SS067-0002 20140321 ORIG	23SB067 23SS067-0002-D 20140321 DUP	23SS067-0204 20140321 NORMAL	23SS068-0002 20140321 NORMAL	23SB068 23SB068-0204 20140321 NORMAL	23SB068-0406 20140321 NORMAL	23SS0690002 20140326 NORMAL	23SB069 23SB0690204 20140326 NORMAL	23SB0690406 20140326 NORMAL	23SS0700002 20140326 NORMAL	23SB070 23SB0700204 20140326 NORMAL	23SB0700406 20140326 NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SS	SB	SB	SS	SB	SB	SS	SB	SB
TOP DEPTH BOTTOM DEPTH	0 2	0 2	2 4	0 2	2 4	6	0 2	2 4	6	0 2	2 4	4 6
MISCELLANEOUS PARAMETERS (F) FLASHPOINT MISCELLANEOUS PARAMETERS (MG/	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
SULFATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (S.U.)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SULFIDE ORGANOPHOSPHOROUS PESTICIDES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIMETHOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DISULFOTON	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL PARATHION	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FAMPHUR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL PARATHION PHORATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PRONAMIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SULFOTEPP	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBS (MG/KG) AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232 AROCLOR-1242 AROCLOR-1248	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA	NA NA	NA NA NA	NA NA NA	NA NA	NA NA
AROCLOR-1248 AROCLOR-1254 AROCLOR-1260	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
PESTICIDES/PCBS (UG/KG)												
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ALDRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ALPHA-BHC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1242	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1248	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1254	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1260	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BETA-BHC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DELTA-BHC DIELDRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN I	NA NA	NA NA	NA NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA
ENDOSULFAN II ENDOSULFAN SULFATE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA
ENDRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN ALDEHYDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN KETONE GAMMA-BHC (LINDANE)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
KEPONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHORATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOXAPHENE PETROLEUM HYDROCARBONS (MG/K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DRO (C08-C28) DRO (C08-C34)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GASOLINE RANGE ORGANICS POLYCYCLIC AROMATIC HYDROCARE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	0.042 U	0.042 U	0.0043 U	0.36 U	0.07 UJ	0.37 J	0.034 U	0.0038 U	0.0039 U	2.5	0.0039 U	0.0049 U
	0.042 U	0.042 U	0.0043 U	0.43 J	0.073 J	0.5 J	0.034 U	0.0038 U	0.0039 U	6.8	0.0039 U	0.0049 U
ACENAPHTHENE	0.042 U	0.042 U	0.0043 U	3.8 0.74	0.39 J	3.6 J	0.034 U	0.0038 U	0.0039 U	0.068 U	0.0039 U	0.0049 U
ACENAPHTHYLENE ANTHRACENE	0.042 U 0.042 J	0.042 U 0.042 U	0.0043 U 0.0043 U	11	1 J 1.3 J	0.59 J 7.6 J	0.034 U 0.034 U	0.0038 U 0.0038 U	0.0039 U 0.0039 U	0.068 U 0.068 U	0.0039 U 0.0039 U	0.0049 U 0.0049 U
BAP EQUIVALENT-HALFND BAP EQUIVALENT-POS	0.52962	0.47362	0.017692	30.884	9.3647	19.078	0.308988	0.0038 U	0.0048709	0.14755	0.0039 U	0.0049 U
	0.52962	0.47362	0.015542	30.884	9.3647	19.078	0.308988	0.0038 U	0.0005809	0.10981	0.0039 U	0.0049 U
BENZO(A)ANTHRACENE	0.25	0.16	0.0088	24	5.7 J	17 J	0.061 J	0.0038 U	0.0039 U	0.097	0.0039 U	0.0049 U
BENZO(A)PYRENE	0.37	0.23	0.012	21	5.9 J	12 J	0.19	0.0038 U	0.0039 U	0.088	0.0039 U	0.0049 U
BENZO(B)FLUORANTHENE	0.65	0.39	0.019	31	8.7 J	18 J	0.23	0.0038 U	0.0052 J	0.12 J	0.0039 U	0.0049 U
BENZO(G,H,I)PERYLENE	0.23	0.15	0.011	9.6	4.5 J	7.6 J	0.34	0.0038 U	0.0039 U	0.068 U	0.0039 U	0.0049 U
BENZO(K)FLUORANTHENE	0.22 J	0.11 J	0.0068 J	12	3.9 J	7.2 J	0.079	0.0038 U	0.0051 J	0.068 U	0.0039 U	0.0049 U
CHRYSENE	0.42 J	0.22 J	0.014	24	5.7 J	16 J	0.098	0.0038 U	0.0099	0.11	0.0039 U	0.0049 U

LOCATION SAMPLE ID SAMPLE DATE	23SS067-0002 20140321	23SB067 23SS067-0002-D 20140321	23SS067-0204 20140321	23SS068-0002 20140321	23SB068 23SB068-0204 20140321	23SB068-0406 20140321	23SS0690002 20140326	23SB069 23SB0690204 20140326	23SB0690406 20140326	23SS0700002 20140326	23SB070 23SB0700204 20140326	23SB0700406 20140326
SAMPLE CODE	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SS	SB	SB	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	0	2	0	2	4	0	2	4	0	2	4
BOTTOM DEPTH	2		4	2	4	6	2	4	6	2	4	6
DIBENZO(A,H)ANTHRACENE	0.055 J	0.18	0.0043 U	3.5	1.5 J	2.6 J	0.075	0.0038 U	0.0039 U	0.068 U	0.0039 U	0.0049 U
FLUORANTHENE	0.85 J	0.45 J	0.031	46	7.5 J	33 J	0.04 J	0.0038 U	0.0039 UJ	0.15	0.0039 UJ	0.0049 UJ
FLUORENE	0.042 U	0.042 U	0.0043 U	5	0.55 J	5.1	0.034 U	0.0038 U	0.0039 U	0.068 U	0.0039 U	0.0049 U
INDENO(1,2,3-CD)PYRENE	0.12	0.073 J	0.0068 J	7.4	4.8 J	8.9 J	0.14 J	0.0038 UJ	0.0039 U	0.068 U	0.0039 U	0.0049 U
NAPHTHALENE	0.042 U	0.042 U	0.0043 U	0.68 J	0.12 J	0.54 J	0.034 U	0.0038 U	0.0039 U	0.95	0.0039 U	0.0049 U
PHENANTHRENE	0.41 J	0.22 1	0.017	34	3.5 1	31 J	0.034 U	0.0038 U	0.0059 U	0.16	0.0039 U	0.0049 U
PYRENE	0.65	0.44	0.017	31	7.1	25 J	0.034 0	0.0038 UJ	0.0038 J	0.068 U	0.0039 U	0.0049 U
SEMIVOLATILES (UG/KG)	0.65	0.44	0.024	31	/ J	25 J	0.11 3	0.0038 03	0.0039 0	0.068 0	0.0039 0	0.0049 0
1,2,4,5-TETRACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		NA NA	NA NA	NA NA					NA NA	NA NA		
1,2-DICHLOROBENZENE	NA NA				NA NA	NA NA	NA NA	NA NA			NA NA	NA NA
1,3,5-TRINITROBENZENE	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA
1,3-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-DINITROBENZENE	NA	NA	NA	NA	NA	NA 	NA 	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-NAPHTHOQUINONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-PHENYLENEDIAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,3,4,6-TETRACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,6-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DIMETHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-DINITROPHENOL	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA
2,4-DINITROTOLUENE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA
2,6-DINITROTOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-ACETYLAMINOFLUORENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-CHLORONAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-CHLORONAPHTHALENE 2-CHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA
							NA NA					
2-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA
2-METHYLPHENOL	NA	NA	NA	NA	NA	NA 	NA 	NA	NA	NA	NA	NA
2-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-PICOLINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DICHLOROBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DIMETHYLBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLCHOLANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-AMINOBIPHENYL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-BROMOPHENYL PHENYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLORO-3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROANILINE	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA
4-CHLOROPHENYL PHENYL ETHER	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA
4-METHYLPHENOL	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA
4-NITROANILINE	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA
4-NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA
4-NITROQUINOLINE-1-OXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA NA
5-NITRO-O-TOLUIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
A,A-DIMETHYLPHENETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACENAPHTHENE ACENAPHTHYLENE			NA NA		NA NA							
	NA NA	NA NA		NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETOPHENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA
ANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ARAMITE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(K)FLUORANTHENE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
BENZYL ALCOHOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SIS(2-CHLOROETHOXY)METHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
IS(2-CHLOROETHOXT)METHANE IS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
IS(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
IS(2-ETHYLHEXYL)PHTHALATE	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA
UTYL BENZYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZILATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIALLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION		23SB067		T	23SB068			23SB069		1	23SB070	
LOCATION SAMPLE ID	23SS067-0002	23SS067 23SS067-0002-D	23SS067-0204	23SS068-0002	23SB068 23SB068-0204	23SB068-0406	23SS0690002	23SB0690204	23SB0690406	23SS0700002	23SB070 23SB0700204	23SB0700406
SAMPLE DATE	20140321	20140321	20140321	20140321	20140321	20140321	20140326	20140326	20140326	20140326	20140326	20140326
SAMPLE CODE	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SS	SB	SB	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	0	2	0	2	4	0	2	4	0	2	4
BOTTOM DEPTH	2	2	4	2	4	6	2	4	6	2	4	6
DIBENZO(A,H)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBENZOFURAN	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIETHYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIMETHYL PHTHALATE DI-N-BUTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DI-N-OCTYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORENE	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA
HEXACHLOROBENZENE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROBUTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROCYCLOPENTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
INDENO(1,2,3-CD)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISODRIN	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOPHORONE	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA
ISOSAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAPHTHALENE NITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIETHTEAMINE N-NITROSODIMETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIMETITEAMINE N-NITROSO-DI-N-BUTYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSO-DI-N-PROPYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMORPHOLINE	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
N-NITROSOPIPERIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPYRROLIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENACETIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENANTHRENE	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PRONAMIDE PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THIONAZIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP HERBICIDES (UG/L)						1 1 1 1						,
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP METALS (UG/L)												
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MERCURY	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP MISCELLANEOUS (UG/L) PAINT FILTER	NA	NA NA	NA	NA	NIA	NA	NIA	NA	NIA	NA	NA	NA
REACTIVE CYANIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
REACTIVE CYANIDE REACTIVE SULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP PESTICIDE/PCBS (UG/L)	IVA	IVA	INA	INA	IVA	IVA	IVA	INA	IVA	IVA	INA	INA
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GAMMA-CHLORDANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR EPOXIDE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOXAPHENE	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA

LOCATION		23SB067			23SB068	=		23SB069			23SB070	
SAMPLE ID	23SS067-0002	23SS067-0002-D	23SS067-0204	23SS068-0002	23SB068-0204	23SB068-0406	23SS0690002	23SB0690204	23SB0690406	23SS0700002	23SB0700204	23SB0700406
SAMPLE DATE	20140321	20140321	20140321	20140321	20140321	20140321	20140326	20140326	20140326	20140326	20140326	20140326
SAMPLE CODE	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SS	SB	SB	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	0	2	0	2	4	0	2	4	0	2	4
BOTTOM DEPTH	2	0	4	2	<u> </u>	6	2	4	6	2	_ _	6
TCLP VOLATILES (UG/L)	_	_		_	-	Ĭ				Ī	·	Ĭ
1,2-DICHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
2-BUTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VOLATILES (MG/KG)	INA	IVA	IVA	INA	INA	IVA	IVA	IN/A	INA	IVA	IVA	INA
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2,2-TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-TRICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		NA NA	NA NA							NA NA	NA NA	
1,1-DICHLOROETHENE	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA
1,1-DICHLOROETHENE		NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA
1,2,3-TRICHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMOETHANE 1,2-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA
1,2-DICHLOROPROPANE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROPRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CIS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYLBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL IODIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PROPIONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
STYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA
VINYL ACETATE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA

LOCATION		23SB067			23SB068			23SB069			23SB070	
SAMPLE ID	23SS067-0002	23SS067-0002-D	23SS067-0204	23SS068-0002	23SB068-0204	23SB068-0406	23SS0690002	23SB0690204	23SB0690406	23SS0700002	23SB0700204	23SB0700406
SAMPLE DATE	20140321	20140321	20140321	20140321	20140321	20140321	20140326	20140326	20140326	20140326	20140326	20140326
SAMPLE CODE	ORIG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SO	so	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SS	SB	SS	SB	SB	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	0	2	0	2	4	0	2	4	0	2	4
BOTTOM DEPTH	2	2	4	2	4	6	2	4	6	2	4	6
VOLATILES (UG/KG)	Ī						Ī			Ī		
1.1.1.2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-DIOXANE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-BUTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-HEXANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYL-2-PENTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMODICHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON DISULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORODIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
M+P-XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE METHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYLENE CHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O-XYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROETHANE PENTACHLORONITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		_				• • • •						
TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA
TRICHLOROFLUOROMETHANE	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
VINYL ACETATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION		23SB071			23SB072		23SB073		23SB074			23SB075	
SAMPLE ID	23SS0710002	23SB0710204	23SB0710406	23SS0720002	23SB0720204	23SB0720406	23SS0730002	23SS0740002	23SB0740204	23SB0740406	23SS0750002	23SB0750204	23SB0750406
SAMPLE DATE SAMPLE CODE	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL
MATRIX	SO	SO	SO	SO	SO	SO SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL												
SUBMATRIX	SS 0	SB	SB	SS 0	SB	SB	SS	SS 0	SB	SB	SS 0	SB	SB
TOP DEPTH BOTTOM DEPTH	2	2	i 6	2	2 4	6	0 2	2	2 4	6	2	2 4	6
DIOXINS/FURANS (UG/KG)	_	•	Ĭ		İ			_	•		_	•	Ĭ
1,2,3,4,6,7,8,9-OCDD	NA												
1,2,3,4,6,7,8,9-OCDF 1,2,3,4,6,7,8-HPCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HPCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-HPCDF	NA												
1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,6,7,8-HXCDF	NA												
1,2,3,7,8,9-HXCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA							
1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2,3,4,6,7,8-HXCDF	NA												
2,3,4,7,8-PECDF 2,3,7,8-TCDD	NA NA												
2,3,7,8-TCDF	NA NA												
TEQ WHO-2007	NA												
TEQ WHO-2007 - HALFND TOTAL HPCDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL HPCDD TOTAL HPCDF	NA NA												
TOTAL HXCDD	NA												
TOTAL PECED	NA NA												
TOTAL PECDD TOTAL PECDF	NA NA												
TOTAL TCDD	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
TOTAL TCDF	NA												
HERBICIDES (UG/KG) 2.4.5-T	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
2,4,5-TP (SILVEX)	NA NA												
2,4-D	NA												
METALS (MG/KG) ANTIMONY	NA	NA	NA	l NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA
ARSENIC	NA NA												
BARIUM	NA												
BERYLLIUM CADMIUM	NA NA												
CHROMIUM	NA NA												
COBALT	NA												
COPPER	NA NA												
LEAD MERCURY	NA NA												
NICKEL	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
SILVER THALLIUM	NA NA												
VANADIUM	NA NA												
ZINC	NA												
METALS (UG/KG) ANTIMONY	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
ARSENIC	NA NA												
BARIUM	NA												
BERYLLIUM CADMIUM	NA NA												
CHROMIUM	NA NA												
COBALT	NA												
COPPER LEAD	NA NA												
LITHIUM	NA NA												
MERCURY	NA												
NICKEL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA							
SELENIUM SILVER	NA NA												
THALLIUM	NA	NA NA	NA	NA									
TIN	NA NA												
VANADIUM ZINC	NA NA												
MISCELLANEOUS PARAMETERS (%)	11/7	IVA	IVA	14/1	IVA	IVA	ING	IVA	1975	IVA	IVA	INA	IVA
ACTINOLITE	NA												
AMOSITE ANTHORIVILITE	NA NA												
ANTHOPHYLLITE ASBESTOS	NA NA												
CHRYSOTILE	NA												
CROCIDOLITE	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
TREMOLITE	NA												

LOCATION	22550710002	23SB071	22502740405	22550720002	23SB072	22500720405	23SB073	22550740002	23SB074	22502740405	2255275002	23SB075	22500750405
SAMPLE ID SAMPLE DATE	23SS0710002 20140326	23SB0710204 20140326	23SB0710406 20140326	23SS0720002 20140326	23SB0720204 20140326	23SB0720406 20140326	23SS0730002 20140326	23SS0740002 20140326	23SB0740204 20140326	23SB0740406 20140326	23SS0750002 20140326	23SB0750204 20140326	23SB0750406 20140326
SAMPLE CODE	NORMAL												
MATRIX	SO NORMAL	SO	SO NORMAL	SO NORMAL	SO	SO NORMAL	SO NORMAL						
SAMPLE TYPE SUBMATRIX	NORMAL SS	NORMAL SB	NORMAL SB	NORMAL SS	NORMAL SB	NORMAL SB	NORMAL SS	NORMAL SS	NORMAL SB	NORMAL SB	NORMAL SS	NORMAL SB	NORMAL SB
TOP DEPTH	0	2	4	0	2	4	0	0	2	4	0	2	4
BOTTOM DEPTH	2	4	6	2	4	6	2	2	4	6	2	4	6
MISCELLANEOUS PARAMETERS (F) FLASHPOINT	NA	NA I	NA I	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
MISCELLANEOUS PARAMETERS (MG/	INA	IVA	IVA	IVA	IVA	IVA	IVA	INA	INA	IVA	INA	INA	INA
SULFATE	NA												
MISCELLANEOUS PARAMETERS (S.U.)	NIA	NA	NA.	NA NA	NA	NA	NA	NIA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/I	NA	NA	NA	INA	NA	INA	NA	NA	INA	NA	NA	INA	NA
CYANIDE	NA												
SULFIDE	NA												
ORGANOPHOSPHOROUS PESTICIDES DIMETHOATE	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
DISULFOTON	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL PARATHION	NA												
FAMPHUR METHYL BARATHION	NA NA												
METHYL PARATHION PHORATE	NA NA												
PRONAMIDE	NA												
SULFOTEPP PERS (MC (MC)	NA												
PCBS (MG/KG) AROCLOR-1016	NA	NA I	NA I	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA
AROCLOR-1221	NA NA												
AROCLOR-1232	NA	NA	NA NA	NA	NA NA	NA							
AROCLOR-1242 AROCLOR-1248	NA NA												
AROCLOR-1248 AROCLOR-1254	NA NA												
AROCLOR-1260	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PESTICIDES/PCBS (UG/KG)													
1,1-DICHLOROETHENE 4,4'-DDD	NA NA												
4,4'-DDE	NA NA	NA NA	NA NA	NA NA	NA NA								
4,4'-DDT	NA												
ALDRIN	NA NA												
ALPHA-CHLORDANE	NA NA												
AROCLOR-1016	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1221	NA												
AROCLOR-1232 AROCLOR-1242	NA NA												
AROCLOR-1242 AROCLOR-1248	NA NA												
AROCLOR-1254	NA												
AROCLOR-1260	NA NA												
BETA-BHC CHLORDANE	NA NA												
DELTA-BHC	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIELDRIN	NA												
ENDOSULFAN I ENDOSULFAN II	NA NA												
ENDOSULFAN SULFATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
ENDRIN	NA												
ENDRIN ALDEHYDE ENDRIN KETONE	NA NA												
GAMMA-BHC (LINDANE)	NA NA												
GAMMA-CHLORDANE	NA												
HEPTACHLOR	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA
HEPTACHLOR EPOXIDE KEPONE	NA NA												
METHOXYCHLOR	NA NA												
PHORATE	NA												
TOXAPHENE PETROLEUM HYDROCAPRONS (MG/K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DRO (C08-C28)	NA												
DRO (C08-C34)	NA												
GASOLINE RANGE ORGANICS	NA												
1-METHYLNAPHTHALENE	0.036 U	0.038 U	0.039 U	0.037 U	0.038 U	0.0041 U	0.004 U	0.0038 U	0.039 U	0.039 U	0.0038 U	0.036 U	0.0047 U
2-METHYLNAPHTHALENE	0.036 U	0.038 U	0.039 U 0.047 J	0.037 U	0.038 U	0.0041 U	0.004 U	0.0038 U	0.039 U	0.039 U	0.0038 U	0.036 U	0.0047 U
ACENAPHTHENE	0.036 U	0.038 U	0.039 U	0.037 U	0.038 U	0.0041 U	0.004 U	0.0038 U	0.039 U	0.039 U	0.0038 U	0.036 U	0.0047 U
ACENAPHTHYLENE	0.12 0.2	0.038 U	0.039 U	0.037 U	0.038 U	0.0041 U	0.0041 J	0.0077 0.0038 U	0.039 U	0.039 U	0.0038 U	0.036 U	0.0047 U
ANTHRACENE BAP EOUIVALENT-HALFND	3.6498	0.038 U 0.14847	0.039 U 0.039 U	0.051 J 0.82039	0.038 U 0.05983	0.0041 U 0.0041 U	0.004 U 0.082008	0.0038 U 0.113318	0.039 U 0.0425645	0.039 U 0.039 U	0.0038 U 0.0038 U	0.036 J 0.17964	0.0047 U 0.047913
BAP EQUIVALENT-POS	3.6498	0.12757	0.039 U	0.82039	0.03684	0.0041 U	0.082008	0.113318	0.017	0.039 U	0.0038 U	0.16164	0.047913
BENZO(A)ANTHRACENE	1.9	0.11	0.039 U	0.33	0.038 U	0.0041 U	0.041	0.048	0.039 U	0.039 U	0.0038 U	0.12	0.033
BENZO(A)PYRENE BENZO(B)FLUORANTHENE	2.4 4.4	0.099 0.17	0.039 U 0.039 U	0.54 0.95	0.032 J 0.048 J	0.0041 U 0.0041 U	0.056 0.087	0.079 0.16	0.017 J 0.039 U	0.039 U 0.039 U	0.0038 U 0.0038 U	0.12 0.21	0.031 0.045
BENZO(G,H,I)PERYLENE	1.4	0.17 0.052 J	0.039 U	0.95	0.048 J 0.038 U	0.0041 U	0.087	0.16	0.039 U	0.039 U	0.0038 U	0.088	0.045
BENZO(K)FLUORANTHENE	1.3	0.046 J	0.039 U	0.28	0.038 U	0.0041 U	0.035	0.043	0.039 U	0.039 U	0.0038 U	0.08	0.018
CHRYSENE	2.8	0.11	0.039 U	0.59	0.04 J	0.0041 U	0.058	0.088	0.039 U	0.039 U	0.0038 U	0.14	0.033

LOCATION SAMPLE ID	23SS0710002	23SB071 23SB0710204	23SB0710406	23SS0720002	23SB072 23SB0720204	23SB0720406	23SB073 23SS0730002	23SS0740002	23SB074 23SB0740204	23SB0740406	23SS0750002	23SB075 23SB0750204	23SB0750406
SAMPLE DATE	20140326	20140326	20140326	20140326	20140326	20140326	20140326	20140326	20140326	20140326	20140326	20140326	20140326
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	so	SO	so	so	so	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SB	SS	SB	SB	SS	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	2	4	0	2	4	0	0	2	4	0	2	4
BOTTOM DEPTH DIBENZO(A,H)ANTHRACENE	0.51	0.038 U	0.039 U	0.12	0.038 U	0.0041 U	0.01	0.0084	0.039 U	0.039 U	0.0038 U	0.036 U	0.0077 J
FLUORANTHENE	1.7	0.15	0.039 UJ	0.25	0.036 G	0.0041 UJ	0.058	0.069	0.039 U	0.039 U	0.0038 UJ	0.030 0	0.0077 3
FLUORENE	0.036 U	0.038 U	0.039 U	0.037 U	0.038 U	0.0041 U	0.004 U	0.0038 U	0.039 U	0.039 U	0.0038 U	0.036 U	0.0047 U
INDENO(1,2,3-CD)PYRENE	0.94 J	0.038 UJ	0.039 U	0.29 J	0.038 U	0.0041 U	0.028 J	0.046 J	0.039 U	0.039 UJ	0.0038 U	0.077 J	0.012 J
NAPHTHALENE	0.051 J	0.038 U	0.039 U	0.037 U	0.038 U	0.0041 U	0.004 U	0.0038 U	0.039 U	0.039 U	0.0038 U	0.036 U	0.0047 U
PHENANTHRENE	0.26	0.12	0.039 U	0.072 J	0.034 J	0.0041 U	0.017	0.013	0.039 U	0.039 U	0.0038 U	0.15	0.01
PYRENE	3.3 J	0.23 J	0.039 U	0.53 J	0.072 J	0.0041 U	0.097 J	0.12 J	0.039 U	0.039 UJ	0.0038 U	0.3 J	0.041 J
SEMIVOLATILES (UG/KG)				N/A	***		N/A	214	214	N.A.			
1,2,4,5-TETRACHLOROBENZENE 1,2,4-TRICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-1RICHLOROBENZENE 1,2-DICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3,5-TRINITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3-DICHLOROBENZENE	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
1,3-DINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-NAPHTHOQUINONE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-PHENYLENEDIAMINE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
1-NAPHTHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,6-TETRACHLOROPHENOL 2,4,5-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2.4.6-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DIMETHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DINITROPHENOL	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,6-DINITROTOLUENE	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
2-ACETYLAMINOFLUORENE 2-CHLORONAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-CHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-NAPHTHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-NITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-PICOLINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DICHLOROBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,3'-DIMETHYLBENZIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-CHLOROPROPENE 3-METHYLCHOLANTHRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4,6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA
4-AMINOBIPHENYL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-BROMOPHENYL PHENYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLORO-3-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-CHLOROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA
4-CHLOROPHENYL PHENYL ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYLPHENOL 4-NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL 4-NITROQUINOLINE-1-OXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
5-NITRO-O-TOLUIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
7,12-DIMETHYLBENZ(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A,A-DIMETHYLPHENETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACENAPHTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACETOR JENONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETOPHENONE ACROLEIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ARAMITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(G,H,I)PERYLENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
BENZO(K)FLUORANTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZYL ALCOHOL BIS(2-CHLOROETHOXY)METHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROETHOXY)METHANE BIS(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BIS(2-ETHYLHEXYL)PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BUTYL BENZYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
CHLOROBENZILATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DIALLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION SAMPLE ID	23SS0710002	23SB071 23SB0710204	23SB0710406	23SS0720002	23SB072 23SB0720204	23SB0720406	23SB073 23SS0730002	23SS0740002	23SB074 23SB0740204	23SB0740406	23SS0750002	23SB075 23SB0750204	23SB0750406
SAMPLE DATE SAMPLE CODE	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL
MATRIX SAMPLE TYPE	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL	SO NORMAL
SUBMATRIX TOP DEPTH	SS 0	SB 2	SB 4	SS 0	SB 2	SB 4	SS 0	SS 0	SB 2	SB 4	SS 0	SB 2	SB 4
BOTTOM DEPTH	2	4	6	2	4	6	2	2	4	6	2	4	6
DIBENZO(A,H)ANTHRACENE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
DIBENZOFURAN DIETHYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIMETHYL PHTHALATE	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
DI-N-BUTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE DIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FLUORENE HEXACHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBUTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROCYCLOPENTADIENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROPROPENE INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
ISODRIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
ISOPHORONE ISOSAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHAPYRILENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHANE SULFONATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE NITROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSODIMETHYLAMINE	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
N-NITROSO-DI-N-BUTYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMETHYLETHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOMORPHOLINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPIPERIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
N-NITROSOPYRROLIDINE O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
PENTACHLOROBENZENE PENTACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENACETIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PHENOL PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRIDINE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SAFROLE THIONAZIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP HERBICIDES (UG/L)	IVA	INA	IVA	IVA	IN/A	INA	INA	IVA	INA	IVA	IVA	INA	INA
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP METALS (UG/L) ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHROMIUM LEAD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MERCURY	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SILVER TCLP MISCELLANEOUS (UG/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L) ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA
GAMMA-BHC (LINDANE)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
GAMMA-CHLORDANE HEPTACHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEPTACHLOR HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOXAPHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

MATES COLUMN COL	LOCATION SAMPLE ID SAMPLE DATE SAMPLE CODE	23SS0710002 20140326 NORMAL	23SB071 23SB0710204 20140326 NORMAL	23SB0710406 20140326 NORMAL	23SS0720002 20140326 NORMAL	23SB072 23SB0720204 20140326 NORMAL	23SB0720406 20140326 NORMAL	23SB073 23SS0730002 20140326 NORMAL	23SS0740002 20140326 NORMAL	23SB074 23SB0740204 20140326 NORMAL	23SB0740406 20140326 NORMAL	23SS0750002 20140326 NORMAL	23SB075 23SB0750204 20140326 NORMAL	23SB0750406 20140326 NORMAL
Superior September Septe	MATRIX	so	SO	SO	so	so	SO	so	SO	so	so	so	SO	SO NORMAL
COLUMN C					-									SB
Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vol. Vo							4				4			4
1.4000.0000.0000.0000.0000.0000.0000.00		2	4	6	2	4	6	2	2	4	6	2	4	6
PERFORM 181	TCLP VOLATILES (UG/L)													
FigSTPS		NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CARDON PRINCES 10.0														NA
SHOOMSTATE 3A														NA
CHARGOFFEET No. MA														
139001-0001-0001-0001-0001-0001-0001-000														
Transparence 10. 1														
WALTER 1987-189														
5.1.2 TELEPACH MARKER MA		IVA	IVA	IVA	IVA	IVA	IVA	IVA	IVA	IVA	IVA	IVA	IVA	IVA
1.1. TITLE CONCRETEMENT 1.0.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
11.4.7500.7600.7600.7600.7600.7600.7600.7600		NA		NA	NA	NA		NA	NA		NA	NA		NA
1.5.00000000000000000000000000000000000	1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
14.001-000000000000000000000000000000000														NA
12.3 THE CONTROL TAX														NA
12-001000000000000000000000000000000000														NA NA
12 DBSSCOTCHARE NA														
1.2 DICHARDSCHOOLS														
1.2 EDEAL DEFENDENCE NA	-,													
ZedTarkore	•													NA NA
2-8FEMONDE MA														NA
1-CH-SERROPERE														NA
ACTORIFIE NA NA NA NA NA NA NA NA NA NA NA NA NA	3-CHLOROPROPENE	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACCIONTIBLE	4-METHYL-2-PENTANONE	NA			NA	NA		NA			NA			NA
AGROUGHER NA NA NA NA NA NA NA NA NA NA NA NA NA														NA
ACRYLORITEE														NA
ERSCRIFE NA NA NA NA NA NA NA NA NA NA NA NA NA														
BEOMEDICH NA NA NA NA NA NA NA NA NA NA NA NA NA														
BROMONETHAME										•••	• • • • • • • • • • • • • • • • • • • •			
BROMONETHAME														NA NA
CARBON DISULFIDE														NA
CHILDROPERION NA NA NA NA NA NA NA NA NA NA NA NA NA	CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
CHURDOTHANE	CARBON TETRACHLORIDE		NA		NA	NA		NA		NA	NA			NA
CHLORDETHANE														NA
CHLOROPGEN														NA
CHLOROPITIANE														NA
CHLOROPRENE														
CIS-12-DICHLOROETHENE														
CIS-13-DICHLOROPROPENE NA NA NA NA NA NA NA NA NA NA NA NA NA														NA NA
DIBSOMMETHANE														NA NA
DICHICORODIFLUOROMETHANE														NA
ETHYLBENZENE NA NA NA NA NA NA NA NA NA NA NA NA NA	DICHLORODIFLUOROMETHANE	NA		NA	NA							NA		NA
ISOBITATIOL														NA
METHACRYLONITRILE								• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			NA
METHYLIODIDE NA NA NA NA NA NA NA NA NA NA NA NA NA														NA NA
METHYL METHACRYLATE														NA NA
METHYLENE CHLORIDE														
PROPIONITRILE NA														
STYRENE NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA NA</td></t<>														NA NA
TETRACHLOROETHENE NA														NA NA
TOLUENE NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA NA</td></t<>														NA NA
TOTAL XYLENES NA NA NA NA NA NA NA NA NA NA NA NA NA														NA NA
TRANS-1,3-DICHLOROPROPENE NA	TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></t<>														NA
TRICHLOROETHENE NA NA NA NA NA NA NA NA NA NA NA NA NA														NA
TRICHLOROFLUOROMETHANE NA NA NA NA NA NA NA NA NA NA NA NA NA														NA
														NA NA
IVINILACEIAIC I INA I NA I NA I NA I NA I NA I NA														NA NA
														NA NA

LOCATION SAMPLE ID	23SS0710002	23SB071 23SB0710204	23SB0710406	23SS0720002	23SB072 23SB0720204	23SB0720406	23SB073 23SS0730002	23SS0740002	23SB074 23SB0740204	23SB0740406	23SS0750002	23SB075 23SB0750204	23SB0750406
SAMPLE DATE SAMPLE CODE	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL	20140326 NORMAL
MATRIX	SO	SO	SO	so	SO	SO	SO	SO	SO	SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SB	SS	SB	SB	SS	SS	SB	SB	SS	SB	SB
TOP DEPTH	0	2	4	0	2	4	0	0	2	4	0	2	4
BOTTOM DEPTH VOLATILES (UG/KG)	2	4			4		2	2	4	0	2	4	
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA NA	NA	NA 	NA	NA	NA	NA NA	NA 	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-TRICHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DIBROMOETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DIOXANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
2-BUTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-HEXANONE 3-CHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYL-2-PENTANONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETONE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOFORM BROMOMETHANIE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BROMOMETHANE CARBON DISULFIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CARBON TETRACHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROMETHANE CHLOROPRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ETHYLBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL ISOBUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN M+P-XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
O-XYLENE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
PENTACHI OPONITROPENIZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PENTACHLORONITROBENZENE PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHANE	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
TOLUENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
VINYL ACETATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

LOCATION		B076	23SB077		SB078	23SB079	23SB080	23SB081
SAMPLE ID	23SS076-0002	23SB076-0203	23SS077-0002	23SS078-0001	23SS078-0001-D	23SS079-0002	23SS080-0002	23SS081-0002
SAMPLE DATE	20140417	20140417	20140417	20140417	20140417	20140417	20140417	20140417
SAMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL
MATRIX	so	SO	SO	SO	SO SO	SO	SO	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SS	SS	SS	SS	SS
OP DEPTH	0	2	0	0	0	0	0	0
BOTTOM DEPTH	2	3	2	1	1	2	2	2
DIOXINS/FURANS (UG/KG)								
,2,3,4,6,7,8,9-OCDD	NA	NA	NA	NA	NA	NA	NA	NA
,2,3,4,6,7,8,9-OCDF	NA	NA	NA	NA	NA	NA	NA	NA
.,2,3,4,6,7,8-HPCDD	NA	NA	NA	NA	NA	NA	NA	NA
.,2,3,4,6,7,8-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA
,2,3,4,7,8,9-HPCDF	NA	NA	NA	NA	NA	NA	NA	NA
.,2,3,4,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA
,2,3,4,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA
,2,3,6,7,8-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA
,2,3,6,7,8-HXCDF	NA	NA	NA	NA	NA	NA	NA	NA
,2,3,7,8,9-HXCDD	NA	NA	NA	NA	NA	NA	NA	NA
.,2,3,7,8,9-HXCDF	NA NA	NA NA	NA	NA	NA	NA	NA	NA
.,2,3,7,8-PECDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,2,3,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
.3.4.6.7.8-HXCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
.,3,4,6,7,8-HXCDF .,3,4,7,8-PECDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	
,3,7,8-TCDD			NA NA					NA NA
1,3,7,8-TCDF	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EQ WHO-2007	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA
EQ WHO-2007 - HALFND	NA	NA	NA	NA	NA	NA	NA	NA
OTAL HPCDD	NA	NA	NA	NA	NA	NA	NA	NA
OTAL HPCDF	NA	NA	NA	NA	NA	NA	NA	NA
OTAL HXCDD	NA	NA	NA	NA	NA	NA	NA	NA
OTAL HXCDF	NA	NA	NA	NA	NA	NA	NA	NA
OTAL PECDD	NA	NA	NA	NA	NA	NA	NA	NA
OTAL PECDF	NA	NA	NA	NA	NA	NA	NA	NA
OTAL TCDD	NA NA	NA NA	NA	NA	NA	NA	NA	NA
OTAL TCDF	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA
HERBICIDES (UG/KG)	107	107	101	10.0	10.1	101	107	101
1.4.5-T	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TP (SILVEX)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-D	NA	NA	NA	NA	NA	NA	NA	NA
METALS (MG/KG)								
ANTIMONY	NA	NA	NA	NA	NA	NA	NA	NA
ARSENIC	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA	NA	NA	NA	NA	NA
BERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA
COBALT	NA	NA	NA	NA	NA	NA	NA	NA
COPPER	NA	NA	NA	NA	NA	NA	NA	NA
EAD	59	15	58	29	31	19	12	21
1ERCURY	NA	NA	NA	NA	NA	NA	NA	NA
IICKEL	NA NA	NA NA	NA	NA	NA	NA	NA	NA
ELENIUM	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA
ILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HALLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MALLIUM MANADIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
INC	NA	NA	NA	NA	NA	NA NA	NA	NA
METALS (UG/KG)	NIA	NIA	NIA	NI A	NIA	A I A	NIA	NI A
NTIMONY	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
RSENIC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ARIUM	NA	NA	NA	NA	NA	NA	NA	NA NA
ERYLLIUM	NA	NA	NA	NA	NA	NA	NA	NA
ADMIUM	NA	NA	NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA
OBALT	NA	NA	NA	NA	NA	NA	NA	NA
OPPER	NA	NA	NA	NA	NA	NA	NA	NA
EAD	NA	NA	NA	NA	NA	NA	NA	NA
ITHIUM	NA	NA	NA	NA	NA	NA	NA	NA
IERCURY	NA	NA	NA	NA	NA	NA	NA	NA
ICKEL	NA	NA	NA	NA	NA	NA	NA	NA
ELENIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
ILVER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HALLIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
IN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
IN /ANADIUM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
INC	NA NA	NA	NA	NA	NA	NA	NA	NA
IISCELLANEOUS PARAMETERS (%								
CTINOLITE	NA	NA	NA	NA	NA	NA NA	NA	NA
MOSITE	NA	NA	NA	NA	NA	NA	NA	NA
NTHOPHYLLITE	NA	NA	NA	NA	NA	NA	NA	NA
SBESTOS	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSOTILE	NA	NA	NA	NA	NA	NA	NA	NA
CROCIDOLITE	NA	NA	NA	NA	NA	NA	NA	NA
TREMOLITE	NA NA	NA NA	NA	NA	NA	NA	NA	NA

	T			1			,	
LOCATION	23SE		23SB077		B078	23SB079	23SB080	23SB081
SAMPLE ID	23SS076-0002	23SB076-0203	23SS077-0002	23SS078-0001	23SS078-0001-D	23SS079-0002	23SS080-0002	23SS081-0002
SAMPLE DATE	20140417	20140417	20140417	20140417	20140417	20140417	20140417	20140417
SAMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO .	SO
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SS	SS	SS	SS	SS
Top Depth	0	2	0	0	0	0	0	0
BOTTOM DEPTH	2	3	2	1	1	2	2	2
MISCELLANEOUS PARAMETERS (F)								
FLASHPOINT	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (MG/								
SULFATE	NA	NA	NA	NA	NA	NA	NA	NA
<u> MISCELLANEOUS PARAMETERS (S.U.)</u>								
PH	NA	NA	NA	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS (UG/L								
CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA
SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
ORGANOPHOSPHOROUS PESTICIDES								
DIMETHOATE	NA	NA	NA	NA	NA	NA	NA	NA
DISULFOTON	NA	NA	NA	NA	NA	NA	NA	NA
THYL PARATHION	NA	NA	NA	NA	NA	NA	NA	NA
AMPHUR	NA	NA	NA	NA	NA	NA	NA	NA
METHYL PARATHION	NA	NA	NA	NA NA	NA	NA	NA	NA
HORATE	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA
RONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
ULFOTEPP	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA
PCBS (MG/KG)								
AROCLOR-1016	NA	NA	NA NA	NA NA	NA	NA	NA	NA
AROCLOR-1010	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1221	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1232 AROCLOR-1242	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1242 AROCLOR-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AROCLOR-1254 AROCLOR-1260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PESTICIDES/PCBS (UG/KG)	INA	INA	INA	IVA	NA NA	IVA	INA	NA .
,,1-DICHLOROETHENE	NIA	NIA	N/A	NA	NA	NA	NA	NA
	NA NA	NA NA	NA NA					
-,4'-DDD	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,4'-DDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,4'-DDT	NA	NA	NA	NA	NA 	NA	NA	NA NA
ALDRIN	NA	NA	NA	NA	NA 	NA	NA	NA NA
ALPHA-BHC	NA	NA	NA	NA	NA	NA	NA	NA
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1016	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1242	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1248	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1254	NA	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1260	NA	NA	NA	NA	NA	NA	NA	NA
BETA-BHC	NA	NA	NA	NA	NA	NA	NA	NA
CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA
DELTA-BHC	NA	NA	NA	NA	NA	NA	NA	NA
DIELDRIN	NA	NA	NA	NA	NA	NA	NA	NA
NDOSULFAN I	NA	NA	NA	NA	NA	NA	NA	NA
NDOSULFAN II	NA	NA	NA	NA	NA	NA	NA	NA
NDOSULFAN SULFATE	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA	NA	NA	NA	NA	NA	NA	NA
NDRIN ALDEHYDE	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN KETONE	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-BHC (LINDANE)	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-CHLORDANE	NA	NA	NA NA	NA	NA	NA	NA	NA
HEPTACHLOR	NA	NA	NA NA	NA	NA	NA	NA	NA
HEPTACHLOR EPOXIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPONE	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA
METHOXYCHLOR	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HORATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
OXAPHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PETROLEUM HYDROCARBONS (MG/K		1773		177.	177	11/1	1 10 1	. 4/ 3
PRO (C08-C28)	NA	NA	NA	NA	NA	NA	NA	NA
PRO (C08-C34)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ASOLINE RANGE ORGANICS	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		INA	INA	IVA	INA	INA	IVA	INA
OLYCYCLIC AROMATIC HYDROCARE		NA	NA	NA	NA	NA	NA	NA
-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
-METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CENAPHTHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CENAPHTHYLENE	NA	NA	NA	NA	NA	NA	NA	NA NA
NTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA
AP EQUIVALENT-HALFND	NA	NA	NA	NA	NA	NA	NA	NA
SAP EQUIVALENT-POS	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA	NA	NA	NA
BENZO(K)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA
CHRYSENE	NA	NA	NA	NA	NA	NA	NA	NA

OCATION		B076	23SB077		B078	23SB079	23SB080	23SB081
SAMPLE ID	23SS076-0002	23SB076-0203	23SS077-0002	23SS078-0001	23SS078-0001-D	23SS079-0002	23SS080-0002	23SS081-0002
AMPLE DATE	20140417	20140417	20140417	20140417	20140417	20140417	20140417	20140417
AMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL
ATRIX	so	so	so	SO	so	so	so	SO
AMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
UBMATRIX	SS	SB	SS	SS	SS	SS	SS	SS
OP DEPTH	0	2	0	0	0	0	0	0
OTTOM DEPTH	2	3	2	1	1	2	2	2
IBENZO(A,H)ANTHRACENE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
LUORANTHENE	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
LUORENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
APHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HENANTHRENE (DENIE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
(RENE	NA	NA	NA	NA	NA	NA	NA	NA NA
EMIVOLATILES (UG/KG)								
2,4,5-TETRACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
2,4-TRICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
2-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
3,5-TRINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
3-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
3-DINITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
4-DICHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NAPHTHOQUINONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-PHENYLENEDIAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAPHTHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3,4,6-TETRACHLOROPHENOL 4.5-TRICHLOROPHENOL		NA NA		NA NA				
.,.	NA NA		NA NA		NA NA	NA NA	NA NA	NA NA
4,6-TRICHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
4-DICHLOROPHENOL	NA	NA	NA 	NA NA	NA	NA	NA	NA
4-DIMETHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
4-DINITROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
4-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA
6-DICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
5-DINITROTOLUENE	NA	NA	NA	NA	NA	NA	NA	NA
ACETYLAMINOFLUORENE	NA	NA	NA	NA	NA	NA	NA	NA
CHLORONAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
METHYLNAPHTHALENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAPHTHYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAPHTHYLAMINE NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PICOLINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
3'-DICHLOROBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA
3'-DIMETHYLBENZIDINE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA
METHYLCHOLANTHRENE	NA	NA	NA	NA	NA	NA	NA	NA
METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
NITROANILINE	NA	NA	NA	NA	NA	NA	NA	NA
6-DINITRO-2-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
AMINOBIPHENYL	NA	NA	NA	NA	NA	NA	NA	NA
BROMOPHENYL PHENYL ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLORO-3-METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROANILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		NA NA		NA NA				
CHLOROPHENYL PHENYL ETHER	NA NA		NA NA		NA NA	NA NA	NA NA	NA NA
METHYLPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NITROANILINE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA
NITROPHENOL	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA
NITROQUINOLINE-1-OXIDE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA
NITRO-O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA
12-DIMETHYLBENZ(A)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA
A-DIMETHYLPHENETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
ENAPHTHENE	NA	NA	NA	NA	NA	NA	NA	NA
ENAPHTHYLENE	NA	NA	NA	NA	NA	NA	NA	NA
CETOPHENONE	NA	NA	NA	NA	NA	NA	NA	NA
ROLEIN	NA	NA	NA	NA	NA	NA	NA	NA
RYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ILINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AMITE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NZO(A)ANTHRACENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NZO(A)PYRENE	NA	NA	NA	NA	NA	NA	NA	NA NA
NZO(B)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA
NZO(G,H,I)PERYLENE	NA	NA	NA	NA	NA	NA	NA	NA
NZO(K)FLUORANTHENE	NA	NA	NA	NA	NA	NA	NA	NA
NZYL ALCOHOL	NA	NA	NA	NA	NA	NA	NA	NA
S(2-CHLOROETHOXY)METHANE	NA	NA	NA	NA	NA	NA	NA	NA
S(2-CHLOROETHYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
S(2-CHLOROISOPROPYL)ETHER	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
5(2-ETHYLHEXYL)PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ITYL BENZYL PHTHALATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA						NA NA
LOROBENZILATE			NA NA	NA NA	NA NA	NA NA	NA NA	
HRYSENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
IALLATE	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	235	B076	23SB077	236	B078	23SB079	23SB080	23SB081
SAMPLE ID	23SS076-0002	23SB076-0203	23SS077-0002	23SS078-0001	23SS078-0001-D	23SS079-0002	23SS080-0002	2355081-0002
SAMPLE DATE	20140417	20140417	20140417	20140417	20140417	20140417	20140417	20140417
SAMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL
MATRIX	SO	SO	SO	SO	SO	SO	SO	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	2	0	0	0	0	0	0
BOTTOM DEPTH	2	3	2	1	1	2	2	2
DIBENZO(A,H)ANTHRACENE	NA	NA	NA	NA	NA	NA	NA	NA
DIBENZOFURAN	NA	NA	NA	NA	NA	NA	NA	NA
DIETHYL PHTHALATE	NA NA	NA	NA	NA	NA	NA NA	NA	NA
DIMETHYL PHTHALATE	NA NA	NA	NA	NA	NA	NA NA	NA	NA
DI-N-BUTYL PHTHALATE	NA	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE	NA	NA	NA	NA	NA	NA NA	NA	NA
DIPHENYLAMINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHANE SULFONATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
FLUORANTHENE FLUORENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROBUTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROCYCLOPENTADIENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HEXACHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISODRIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOPHORONE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOSAFROLE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
METHAPYRILENE	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
METHYL METHANE SULFONATE	NA	NA	NA NA	NA	NA	NA	NA	NA
NAPHTHALENE	NA	NA	NA	NA	NA	NA	NA	NA
NITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIMETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSO-DI-N-BUTYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSO-DI-N-PROPYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIPHENYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOMETHYLETHYLAMINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOMORPHOLINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPIPERIDINE	NA	NA	NA	NA	NA	NA	NA	NA
N-NITROSOPYRROLIDINE	NA	NA	NA	NA	NA	NA	NA	NA
O,O,O-TRIETHYL PHOSPHOROTHIOATE	NA	NA	NA	NA	NA	NA	NA	NA
O-TOLUIDINE	NA	NA	NA	NA	NA	NA	NA	NA
P-DIMETHYLAMINOAZOBENZENE	NA NA	NA	NA	NA	NA	NA NA	NA	NA
PENTACHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROPHENOL	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENACETIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENANTHRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PHENOL PRONAMIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PYRENE PYRIDINE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SAFROLE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
THIONAZIN	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP HERBICIDES (UG/L)	INA	IVO	INC	INA	LVA	INU	IVA	IVA
2,4,5-TP (SILVEX)	NA	NA	NA	NA	NA	NA	NA	NA
2,4-D	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP METALS (UG/L)								
ARSENIC (SG/E)	NA	NA	NA	NA	NA	NA	NA	NA
BARIUM	NA	NA	NA NA	NA	NA	NA	NA	NA
CADMIUM	NA	NA	NA NA	NA	NA	NA	NA	NA
CHROMIUM	NA	NA	NA	NA	NA	NA	NA	NA
LEAD	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA
MERCURY	NA	NA	NA	NA	NA	NA	NA	NA
SELENIUM	NA	NA	NA	NA	NA	NA	NA	NA
SILVER	NA	NA	NA	NA	NA	NA	NA	NA
TCLP MISCELLANEOUS (UG/L)								
PAINT FILTER	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE CYANIDE	NA	NA	NA	NA	NA	NA	NA	NA
REACTIVE SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
TCLP PESTICIDE/PCBS (UG/L)								
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA
ENDRIN	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-BHC (LINDANE)	NA	NA	NA	NA	NA	NA	NA	NA
GAMMA-CHLORDANE	NA	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR	NA NA	NA	NA	NA	NA	NA NA	NA	NA
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	NA	NA	NA	NA
METHOXYCHLOR	NA	NA	NA	NA	NA	NA	NA	NA
TOXAPHENE	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	23S	B076	23SB077	239	B078	23SB079	23SB080	23SB081
SAMPLE ID	23SS076-0002	23SB076-0203	23SS077-0002	23SS078-0001	23SS078-0001-D	2355079-0002	2355080-0002	23SS081-0002
SAMPLE DATE	20140417	20140417	20140417	20140417	20140417	20140417	20140417	20140417
SAMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL
MATRIX	so	SO	SO	SO	so	SO	SO	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	2	0	0	0	0	0	0
BOTTOM DEPTH	2	3	2	1	1	2	2	2
TCLP VOLATILES (UG/L)								
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
VOLATILES (MG/KG)								
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA
ACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM	NA NA	NA	NA	NA	NA NA	NA	NA	NA
BROMOMETHANE	NA NA	NA	NA	NA	NA NA	NA	NA	NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA NA	NA	NA	NA	NA NA	NA	NA	NA
CHLOROBENZENE	NA NA	NA	NA	NA	NA NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CHLOROPRENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CIS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DIBROMOMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DICHLORODIFLUOROMETHANE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ETHYLBENZENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ISOBUTANOL STATE OF THE STATE O	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHACRYLONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL IODIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL 1001DE METHYL METHACRYLATE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
METHYL METHACKYLATE METHYLENE CHLORIDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PROPIONITRILE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
STYRENE TETRACHI ODOETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TETRACHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOLUENE TOTAL XXI ENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TOTAL XYLENES	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,2-DICHLOROETHENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,3-DICHLOROPROPENE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TRANS-1,4-DICHLORO-2-BUTENE	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
VINYL ACETATE	NA	NA	NA	NA	NA	NA	NA	NA
VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA

LOCATION	235	B076	23SB077	239	SB078	23SB079	23SB080	23SB081
SAMPLE ID	23SS076-0002	23SB076-0203	23SS077-0002	23SS078-0001	23SS078-0001-D	23SS079-0002	23SS080-0002	23SS081-0002
SAMPLE DATE	20140417	20140417	20140417	20140417	20140417	20140417	20140417	20140417
SAMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	DUP	NORMAL	NORMAL	NORMAL
MATRIX	SO	so	SO	so	so	so	so	so
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SS	SB	SS	SS	SS	SS	SS	SS
TOP DEPTH	0	2	0	0	0	0	0	0
BOTTOM DEPTH	2	3	2	1	1	2	2	2
VOLATILES (UG/KG)								_
1,1,1,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-TRICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1.1-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,1-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DIBROMOETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROPROPANE	NA	NA	NA	NA	NA	NA	NA	NA
1,4-DIOXANE	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
2-BUTANONE	NA	NA	NA	NA	NA	NA	NA	NA
2-HEXANONE	NA	NA	NA	NA	NA	NA	NA	NA
3-CHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA
4-METHYL-2-PENTANONE	NA	NA	NA	NA	NA	NA	NA	NA
ACETONE	NA	NA	NA	NA	NA	NA	NA	NA
ACETONITRILE	NA	NA	NA	NA	NA	NA	NA	NA
ACROLEIN	NA	NA	NA	NA	NA	NA	NA	NA
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA
BROMODICHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
BROMOFORM	NA	NA	NA	NA	NA	NA	NA	NA
BROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
CARBON DISULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
CARBON TETRACHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
CHLORODIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
CHLOROPRENE	NA	NA	NA	NA	NA	NA	NA	NA
CIS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA
DIBROMOMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
ETHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA
ETHYLBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	NA	NA	NA	NA	NA	NA	NA	NA
ISODRIN	NA	NA	NA	NA	NA	NA	NA	NA
M+P-XYLENES	NA	NA	NA	NA	NA	NA	NA	NA
METHACRYLONITRILE	NA	NA	NA	NA	NA	NA	NA	NA
METHYL IODIDE	NA	NA	NA	NA	NA	NA	NA	NA
METHYL METHACRYLATE	NA	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA
O-XYLENE	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
PENTACHLORONITROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA
PROPIONITRILE	NA	NA	NA	NA	NA	NA	NA	NA
STYRENE	NA	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA
TOLUENE	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL XYLENES	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	NA	NA	NA	NA	NA	NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA
VINYL ACETATE	NA	NA	NA	NA	NA	NA	NA	NA
VINYL CHLORIDE	NA	NA	NA	NA	NA	NA	NA	NA

Table B1-2 Sediment Sample Analytical Data SWMU 23 - Battery Shop Building 36 NSA Crane, Crane, Indiana Page 1 of 3

		/								/
LOCATION		/SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006	23SW/SD008		/SD009
SAMPLE ID	23SD001-0006	23SD001-0006-D	23SD002-0006	23SD003-0006	23SD004-0006	23SD005-0006	23SD006-0006	23SD008-0006	23SD009-0006	23SD009-0006-D
SAMPLE DATE	20121008	20121008	20121008	20121008	20121008	20121008	20121008	20121008	20130519	20130519
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP
MATRIX	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
TOP DEPTH	0	0	O	0	0	0	0	0	0	0
BOTTOM DEPTH	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
METALS (MG/KG)										
ANTIMONY	4.42 U	4.01 U	2.58 U	2.74 U	2.52 U	2.66 U	2.59 U	12.4	2.34 UJ	1.13 UJ
ARSENIC	9.84	8.68	7.16	12.3	12.2	4.59	8.22	8.24	5.88	5.2
BARIUM	219	151	79.8	108	112	20.9	25.3	2290	27.3	39.6
BERYLLIUM	0.766 J	0.659 J	0.7 J	1.32 J	1.48 J	0.526 J	0.672 J	1.27 U	0.46	0.543 J
CADMIUM	0.76 J	0.963 J	0.478 J	0.684 U	0.629 U	0.665 U	0.648 U	29.7	0.586 U	0.282 U
CHROMIUM	22	22.3	20.5	24.2	35.2	9.63	15.2	79.4	13.3 J	
										11.5 J
COBALT	12.2	10.1	12.7	62	52.4	5.11	4.65	10.4	5.55	4.41 J
COPPER	34.4	35.3	14.1	13.8	17.5	6.1	7.21	553	7.2	8.18
LEAD	52.3	70.3	32.6	28.1	28.4	29.8	9.19	287	28.3 J	32.4 J
MERCURY	0.14	0.134	0.0526	0.0578	0.0385 J	0.0196 J	0.0406 J	0.211	0.0171 J	0.0524
NICKEL	18.3	15.7	17.4	35.7	48.1	19.5	24.5	34.4	25.9	32
SELENIUM	2.76 U	2.51 U	1.61 U	1.71 U	1.57 U	1.66 U	1.62 U	3.18 U	1.46 U	0.706 U
SILVER	1.1 U	1 U	0.959 J	0.684 U	0.629 U	0.665 U	0.648 U	9.08	0.586 U	0.282 U
THALLIUM	2.21 U	2.01 U	1.29 U	1.37 U	1.26 U	1.33 U	1.3 U	2.54 U	1.17 UJ	0.565 UJ
VANADIUM	35.2	30	19.8	26.1	33.9	9.1	17.8	15	15.6	11.1
ZINC	207	217	67.2	80	103	42.1	47.6	1940	53.8	54.9
MISCELLANEOUS PARAMETERS (MG)										
TOTAL ORGANIC CARBON	46200	60000	26300	24200	9830	4710	15900	89300	NA	NA
PCBS (MG/KG)	.0200	3333	2000		7555	., 20		0,500		
AROCLOR-1016	0.00341 UJ	0.00334 UJ	0.00208 UJ	0.00209 UJ	0.00203 UJ	0.00213 UJ	0.00217 UJ	0.00386 UJ	NA	NA
AROCLOR-1221	0.00341 UJ	0.00334 UJ	0.00208 UJ	0.00209 UJ	0.00203 UJ	0.00213 UJ	0.00217 UJ	0.00386 UJ	NA NA	NA NA
AROCLOR 1221 AROCLOR-1232	0.00341 UJ	0.00334 UJ	0.00208 UJ	0.00209 UJ	0.00203 UJ	0.00213 UJ	0.00217 UJ	0.00386 UJ	NA NA	NA NA
AROCLOR-1232 AROCLOR-1242	0.00341 UJ	0.00334 UJ	0.00208 UJ	0.00209 UJ	0.00203 UJ	0.00213 UJ	0.00217 UJ	0.00386 UJ	NA NA	NA NA
AROCLOR-1242 AROCLOR-1248	0.00341 UJ	0.00334 UJ	0.00208 UJ	0.00209 UJ	0.00203 UJ	0.00213 UJ	0.00217 UJ	0.00386 UJ	NA NA	NA NA
AROCLOR-1246 AROCLOR-1254	0.00341 UJ	0.00334 UJ	0.00208 UJ	0.00209 UJ	0.00203 UJ	0.00213 0J 0.00298 J	0.00217 UJ	0.00386 0J 0.00974 J		NA NA
				0.00209 0J 0.0063 J		0.00298 J 0.00224 J			NA NA	NA NA
AROCLOR-1260	0.0105 J	0.00702 J	0.0108 J	0.0063 J	0.00264 J	0.00224 J	0.00217 UJ	0.00386 UJ	INA	INA
PETROLEUM HYDROCARBONS (MG/H		NIA	N/A	NIA	NIA.	NIA	NIA.	40000 11	NIA	NIA.
DRO (C08-C28)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	48600 U	NA NA	NA NA
DRO (C08-C34)	NA NA	NA NA	NA NA	NA	NA	NA	NA	48600 U	NA NA	NA NA
GASOLINE RANGE ORGANICS	NA -	NA	NA	NA	NA	NA	NA	504	NA	NA
POLYCYCLIC AROMATIC HYDROCAR										
2-METHYLNAPHTHALENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00834	0.0216 U	0.00418 U	26.5	0.0187 U	0.0223 U
ACENAPHTHENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00392 U	0.0216 U	0.00418 U	1.54	0.0187 U	0.0223 U
ACENAPHTHYLENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00392 U	0.0216 U	0.00685 J	0.0392 U	0.0187 U	0.0223 U
ANTHRACENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00392 U	0.0216 U	0.00418 U	0.0392 U	0.0187 U	0.0223 U
BENZO(A)ANTHRACENE	0.0347 U	0.0587 J	0.0217 U	0.00424 U	0.00392 U	0.0216 U	0.00418 U	0.61	0.0187 U	0.0387 J
BENZO(A)PYRENE	0.0734	0.101	0.0303 J	0.00604 J	0.00889	0.0216 U	0.255	0.0392 U	0.0187 U	0.0434 J
BENZO(B)FLUORANTHENE	0.114	0.092	0.0399 J	0.00583 J	0.00846	0.0226 J	0.254	0.0392 U	0.0187 U	0.0537
BENZO(G,H,I)PERYLENE	0.0858	0.0342 U	0.036 J	0.00424 U	0.00998	0.0216 U	0.185	0.0392 U	0.0187 U	0.0361 J
BENZO(K)FLUORANTHENE	0.082	0.125	0.0217 U	0.00493 J	0.00476 J	0.0216 U	0.141	0.0392 U	0.0187 U	0.0359 J
CHRYSENE	0.0989	0.103	0.0297 J	0.00424 U	0.00854	0.0216 U	0.00418 U	0.962	0.0187 U	0.0545
DIBENZO(A,H)ANTHRACENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00392 U	0.0216 U	0.0884	0.0392 U	0.0187 U	0.0223 U
FLUORANTHENE	0.101	0.103	0.04 J	0.0119	0.00901	0.0231 J	0.0084	1.5	0.0187 U	0.0405 J
FLUORENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00392 U	0.0216 U	0.00418 U	0.0392 U	0.0187 U	0.0223 U
INDENO(1,2,3-CD)PYRENE	0.0634 J	0.0791	0.0217 U	0.00424 0 0.00492 J	0.00532 0 0.00526 J	0.0216 U	0.164	0.23	0.0187 U	0.0223 U
NAPHTHALENE	0.0347 U	0.0791 0.0342 U	0.0237 U	0.00492 J 0.00424 U	0.00320 J 0.00392 U	0.0216 U	0.00418 U	12.2	0.0187 U	0.0331 J 0.0223 U
PHENANTHRENE	0.0347 U	0.0342 U	0.0217 U	0.00424 U	0.00392 0	0.0216 U	0.00418 U	4.24	0.0187 U	0.0223 U
PYRENE	0.0929	0.0342 0	0.0217 U	0.00424 0	0.012	0.0216 U	0.0628	2.56	0.0187 U	0.0223 U 0.0435 J
	0.0323	0.11	U.U39/ J	U.UU340	0.013/	U.UZ34 J	0.0020	2.30	0.010/ 0	0.0 1 33 J
VOLATILES (MG/KG)	0.276 113	0.260.113	0.140.113	0.12.117	0.122.117	0 126 117	0.120.117	0.42.117	NIA	NA
1,1,1,2-TETRACHLOROETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA 0.0022 H
1,1,1-TRICHLOROETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,1,2,2-TETRACHLOROETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,1,2-TRICHLOROETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,1,2-TRICHLOROTRIFLUOROETHANE	NA	NA	NA	NA	NA	NA	NA	NA	0.00391 U	0.00439 U

Table B1-2 Sediment Sample Analytical Data SWMU 23 - Battery Shop Building 36 NSA Crane, Crane, Indiana Page 2 of 3

LOCATION	23SW	/SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006	23SW/SD008	23SW	/SD009
SAMPLE ID	23SD001-0006	23SD001-0006-D	23SD002-0006	23SD003-0006	23SD004-0006	23SD005-0006	23SD006-0006	23SD008-0006	23SD009-0006	23SD009-0006-D
SAMPLE DATE	20121008	20121008	20121008	20121008	20121008	20121008	20121008	20121008	20130519	20130519
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP
MATRIX	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
TOP DEPTH	0	0	0	0	0	0	0	0	0	0
BOTTOM DEPTH	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1,1-DICHLOROETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,1-DICHLOROETHENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,2,3-TRICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 UJ	0.0022 U
1,2,3-TRICHLOROPROPANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
1,2,4-TRICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 UJ	0.0022 U
1,2-DIBROMO-3-CHLOROPROPANE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
1,2-DIBROMOETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,2-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
1,2-DICHLOROETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 UJ
1,2-DICHLOROPROPANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
1,3-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
1,4-DICHLOROBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
2-BUTANONE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 UJ
2-HEXANONE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
3-CHLOROPROPENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
4-METHYL-2-PENTANONE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 UJ
ACETONE	1.1 UJ	1.07 UJ	0.591 UJ	0.521 UJ	0.528 UJ	0.542 UJ	0.557 UJ	1.72 UJ	0.00782 U	0.00879 U
ACETONITRILE	2.76 UR	2.68 UR	1.48 UR	1.3 UR	1.32 UR	1.36 UR	1.39 UR	4.3 UR	NA	NA
ACROLEIN	1.1 UR	1.07 UR	0.591 UR	0.521 UR	0.528 UR	0.542 UR	0.557 UR	1.72 UR	NA	NA
ACRYLONITRILE	1.1 UJ	1.07 UJ	0.591 UJ	0.521 UJ	0.528 UJ	0.542 UJ	0.557 UJ	1.72 UJ	NA	NA
BENZENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
BROMOCHLOROMETHANE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
BROMODICHLOROMETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
BROMOFORM	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
BROMOMETHANE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
CARBON DISULFIDE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CARBON TETRACHLORIDE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CHLOROBENZENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CHLORODIBROMOMETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CHLOROETHANE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
CHLOROFORM	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CHLOROMETHANE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
CHLOROPRENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
CIS-1,2-DICHLOROETHENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CIS-1,3-DICHLOROPROPENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
CYCLOHEXANE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
DIBROMOMETHANE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
DICHLORODIFLUOROMETHANE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 UJ	0.00439 U
ETHYL METHACRYLATE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
ETHYLBENZENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	4.76 J	0.00196 U	0.0022 U
ISOBUTANOL	4.41 UJ	4.29 UJ	2.36 UJ	2.08 UJ	2.11 UJ	2.17 UJ	2.23 UJ	6.88 UJ	NA	NA
ISOPROPYLBENZENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
M+P-XYLENES	NA	NA	NA	NA	NA	NA	NA	NA	0.00391 U	0.00439 U
METHACRYLONITRILE	2.76 UJ	2.68 UJ	1.48 UJ	1.3 UJ	1.32 UJ	1.36 UJ	1.39 UJ	4.3 UJ	NA	NA
METHYL ACETATE	NA	NA	NA	NA	NA	NA	NA	NA	0.00391 UJ	0.00439 UJ
METHYL CYCLOHEXANE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
METHYL IODIDE	1.1 UJ	1.07 UJ	0.591 UJ	0.521 UJ	0.528 UJ	0.542 UJ	0.557 UJ	1.72 UJ	NA	NA
METHYL METHACRYLATE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
METHYL TERT-BUTYL ETHER	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
METHYLENE CHLORIDE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
O-XYLENE	NA	NA	NA	NA	NA	NA	NA	NA	0.00196 U	0.0022 U
PROPIONITRILE	2.76 UR	2.68 UR	1.48 UR	1.3 UR	1.32 UR	1.36 UR	1.39 UR	4.3 UR	NA	NA
STYRENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
TETRACHLOROETHENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 UJ	0.0022 U
TOLUENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	2.64 J	0.00196 U	0.0022 U

Table B1-2 Sediment Sample Analytical Data SWMU 23 - Battery Shop Building 36 NSA Crane, Crane, Indiana Page 3 of 3

LOCATION	23SW	/SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006	23SW/SD008	23SW	/SD009
SAMPLE ID	23SD001-0006	23SD001-0006-D	23SD002-0006	23SD003-0006	23SD004-0006	23SD005-0006	23SD006-0006	23SD008-0006	23SD009-0006	23SD009-0006-D
SAMPLE DATE	20121008	20121008	20121008	20121008	20121008	20121008	20121008	20121008	20130519	20130519
SAMPLE CODE	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP
MATRIX	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD
TOP DEPTH	0	0	0	0	0	0	0	0	0	0
BOTTOM DEPTH	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
TOTAL XYLENES	0.828 UJ	0.804 UJ	0.443 UJ	0.39 UJ	0.396 UJ	0.407 UJ	0.418 UJ	30.5 J	0.00587 U	0.00659 U
TRANS-1,2-DICHLOROETHENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
TRANS-1,3-DICHLOROPROPENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U
TRANS-1,4-DICHLORO-2-BUTENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	NA	NA
TRICHLOROETHENE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00124 J	0.0012 J
TRICHLOROFLUOROMETHANE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	0.00391 U	0.00439 U
VINYL ACETATE	0.552 UJ	0.536 UJ	0.295 UJ	0.26 UJ	0.264 UJ	0.271 UJ	0.279 UJ	0.861 UJ	NA	NA
VINYL CHLORIDE	0.276 UJ	0.268 UJ	0.148 UJ	0.13 UJ	0.132 UJ	0.136 UJ	0.139 UJ	0.43 UJ	0.00196 U	0.0022 U

Table B1-3
Surface Water Sample Analytical Data
SWMU 23 - Battery Shop Building 36
NSA Crane, Crane, Indiana
Page 1 of 6

LOCATION	23/00-012	23/00-014		/SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006
SAMPLE ID	23/00-012	23/00-014	23SW001	23SW001-D	23SW002	23SW003	23SW004	23SW005	23SW006
SAMPLE DATE	19960222	19960222	20121008	20121008	20121008	20121008	20121008	20121008	20121008
SAMPLE CODE	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SW	sw	SW	SW	SW	SW	SW	SW	SW
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	NA	NA	SW	SW	SW	SW	SW	SW	SW
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
DISSOLVED METALS (UG/L)	3333	3333	3333	3333	3333	3333	3333		
ANTIMONY	NA	NA	2 U	2 U	2 U	2 U	2 U	2 U	2 U
ARSENIC	NA NA	NA NA	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
BARIUM	NA NA	NA NA	73	72.5	54.4	47.8	47.4	42	38.9
BERYLLIUM		NA NA	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
	NA NA					0.5 U	0.5 U		
CADMIUM	NA NA	NA	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
CHROMIUM	NA NA	NA NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
COBALT	NA NA	NA	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
COPPER	NA	NA	1.42 J	1.32 J	1.6 J	2 U	2.46 J	2 U	2 U
LEAD	NA	NA	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
MERCURY	NA	NA	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
NICKEL	NA	NA	0.907 J	0.772 J	1.06 J	0.959 J	3.92	4.25	12.2
SELENIUM	NA	NA	1.25 U	1.25 U	1.25 U	1.25 U	1.25 U	1.25 U	1.25 U
SILVER	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
THALLIUM	NA	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VANADIUM	NA	NA	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
ZINC	NA	NA	1.82 J	1.52 J	2.5 J	2.5 U	4.75 J	4.62 J	14
METALS (UG/L)									
ANTIMONY	1.8 U	1.8 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
ARSENIC	3 U	3 U	2.16 J	1.52 J	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
BARIUM	45.3 B	87.1 B	144	121	56.4	47.8	47.9	43.9	39
BERYLLIUM	0.32 B	4.3 B	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CADMIUM	0.2 U	0.36 B	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
CHROMIUM	1.9 B	6.3 B	3.21 J	2.12 J	1 UJ	0.56 J	0.681 J	1 UJ	1 UJ
COBALT	0.64 U	3.4	3.44	2.59 J	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
COPPER	3.1 B	13.9 B	10.7	8.97	1.79 J	1.31 J	1.26 J	2.3 U	2.3 U
LEAD	2.4 B	10.1	16.3	13.9	0.75 U	0.75 U	0.685 J	0.814	0.75 U
MERCURY	0.2 U	0.2 U	0.16 U	0.16 U	0.75 U	0.75 U	0.065 J 0.16 U	0.16 U	
									0.16 U
NICKEL	37.5 B	316	4.26	2.86	1.25 J	1.08 J	2.59	4.9	12.8
SELENIUM	2.6 U	2.6 U	1.25 U	1.25 U	1.25 U	1.25 U	1.25 U	1.25 U	1.25 U
SILVER	0.7 U	0.7 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
THALLIUM	3.5 U	3.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TIN	4.2 U	4.2 U	NA	NA	NA	NA	NA	NA	NA
VANADIUM	0.9 B	5.9	7.29 J	5.81 J	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ
ZINC	27.7	272	62.6 J	44.5 J	1.93 J	1.31 J	2.87 J	6.37 J	13.3 J
MISCELLANEOUS PARAMETERS (MG									
HARDNESS AS CACO3	NA	NA	228	222	193	162	226	321	295
MISCELLANEOUS PARAMETERS (UG									
CYANIDE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
SULFIDE	2.5 U	2500 U	NA	NA	NA	NA	NA	NA	NA
ORGANOPHOSPHOROUS PESTICIDE	S (UG/L)								
DIMETHOATE	0.5 U	0.77	NA	NA	NA	NA	NA	NA	NA
DISULFOTON	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
FAMPHUR	0.5 U	1 PB	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
SULFOTEPP	0.5 U	0.5 U	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
JOLI OTLIT	0.5 0	0.5 0	1 11/1	111/1	IN/A	1 11/7	IN/A	IN/T	1 11/-1

Table B1-3 Surface Water Sample Analytical Data SWMU 23 - Battery Shop Building 36 NSA Crane, Crane, Indiana Page 2 of 6

LOCATION	23/00-012	23/00-014	23SW	//SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006
SAMPLE ID	23/00-012	23/00-014	23SW001	23SW001-D	23SW002	23SW003	23SW004	23SW005	23SW006
SAMPLE DATE	19960222	19960222	20121008	20121008	20121008	20121008	20121008	20121008	20121008
SAMPLE CODE	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SW	SW	SW	SW	SW	SW	SW	SW	SW
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	NA NA	NA	SW	SW	SW	SW	SW	SW	SW
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
PESTICIDES/PCBS (UG/L)	0.111	0.1.11	NA	NIA	NA	NIA	N/A	N/A	NIA
1,1-DICHLOROETHENE	0.1 U	0.1 U	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA
4,4'-DDD	0.1 U	0.0008 BJP	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
4,4'-DDT	0.1 U	0.1 U	NA	NA	NA	NA	NA	NA	NA
ALDRIN	0.03 U	0.03 U	NA	NA	NA	NA	NA	NA	NA
ALPHA-BHC	0.03 U	0.03 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1016	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1221	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1232	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1242	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1248	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1254	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
AROCLOR-1260	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
BETA-BHC	0.03 U	0.03 U	NA	NA	NA	NA	NA	NA	NA
CHLORDANE	0.12 U	0.12 U	NA	NA	NA	NA	NA	NA	NA
DELTA-BHC	0.03 U	0.0014 J	NA	NA	NA	NA	NA	NA	NA
DIELDRIN	0.03 U	0.0018 JP	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN I	0.0003 JP	0.0011 JP	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN II	0.1 U	0.1 U	NA	NA	NA	NA	NA	NA	NA
ENDOSULFAN SULFATE	0.0062 JP	0.05 U	NA	NA	NA	NA	NA	NA	NA
ENDRIN	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA
ENDRIN ALDEHYDE	0.03 U	0.03 U	NA	NA	NA	NA	NA	NA	NA
GAMMA-BHC (LINDANE)	0.03 U	0.03 U	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR	0.0012 JP	0.03 U	NA	NA	NA	NA	NA	NA	NA
HEPTACHLOR EPOXIDE	0.0017 JP	0.0019 JP	NA	NA	NA	NA	NA	NA	NA
METHOXYCHLOR	0.3 U	0.0097 JP	NA	NA	NA	NA	NA	NA	NA
PHORATE	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA
TOXAPHENE	1 U	1 U	NA	NA	NA	NA	NA	NA	NA
POLYCYCLIC AROMATIC HYDROCA	ARBONS (UG/L)								
2-METHYLNAPHTHALENE	NA NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
ACENAPHTHENE	NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
ACENAPHTHYLENE	NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
ANTHRACENE	NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
BENZO(A)ANTHRACENE	NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
BENZO(A)PYRENE	NA NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
BENZO(B)FLUORANTHENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
BENZO(G,H,I)PERYLENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
BENZO(K)FLUORANTHENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
CHRYSENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
DIBENZO(A,H)ANTHRACENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
FLUORANTHENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
FLUORENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
INDENO(1,2,3-CD)PYRENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
NAPHTHALENE	NA NA	NA NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
	NA NA		1 U						
PHENANTHRENE	INA	NA	1 U	1 U	0.2 U	0.2 U	0.2 U	0.192 U	0.2 U

Table B1-3
Surface Water Sample Analytical Data
SWMU 23 - Battery Shop Building 36
NSA Crane, Crane, Indiana
Page 3 of 6

LOCATION	23/00-012	23/00-014	23SW	//SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006
SAMPLE ID	23/00-012	23/00-014	23SW001	23SW001-D	23SW002	23SW003	23SW004	23SW005	23SW006
SAMPLE DATE	19960222	19960222	20121008	20121008	20121008	20121008	20121008	20121008	20121008
SAMPLE CODE	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SW	SW	SW	SW	SW	SW	SW	SW	SW
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	NA 2000	NA OOOO	SW	SW	SW	SW	SW	SW	SW
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
PYRENE	NA	NA	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.0962 U	0.1 U
SEMIVOLATILES (UG/L)									
1,2,4,5-TETRACHLOROBENZENE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
1,2,4-TRICHLOROBENZENE	5 U	5 U	NA	NA	NA	NA	NA	NA	NA
1,2-DICHLOROBENZENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
1,3,5-TRINITROBENZENE	45 U	45 U	NA	NA	NA	NA	NA	NA	NA
1,3-DICHLOROBENZENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
1,3-DINITROBENZENE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
1,4-DICHLOROBENZENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
1,4-NAPHTHOQUINONE	35 U	35 U	NA	NA	NA	NA	NA	NA	NA
1,4-PHENYLENEDIAMINE	80 U	80 U	NA	NA	NA	NA	NA	NA	NA
1-NAPHTHYLAMINE	35 U	35 U	NA	NA	NA	NA	NA	NA	NA
2,3,4,6-TETRACHLOROPHENOL	35 U	35 U	NA	NA	NA	NA	NA	NA	NA
2,4,5-TRICHLOROPHENOL	25 U	25 U	NA	NA	NA	NA	NA	NA	NA
2,4,6-TRICHLOROPHENOL	25 U	25 U	NA	NA	NA	NA	NA	NA	NA
2,4-DICHLOROPHENOL	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
2,4-DIMETHYLPHENOL	35 U	35 U	NA	NA	NA	NA	NA	NA	NA
2,4-DINITROPHENOL	75 U	75 U	NA	NA	NA	NA	NA	NA	NA
2,4-DINITROTOLUENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
2,6-DICHLOROPHENOL	25 U	25 U	NA	NA	NA	NA	NA	NA	NA
2,6-DINITROTOLUENE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
2-CHLORONAPHTHALENE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
2-CHLOROPHENOL	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
2-METHYLNAPHTHALENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
2-METHYLPHENOL	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
2-NAPHTHYLAMINE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
2-NITROANILINE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
2-NITROPHENOL	5 U	5 U	NA	NA	NA	NA	NA	NA	NA
2-PICOLINE	45 U	45 U	NA	NA	NA	NA	NA	NA	NA
3,3'-DICHLOROBENZIDINE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
3,3'-DIMETHYLBENZIDINE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
3-METHYLPHENOL	35 U	35 U	NA	NA	NA	NA	NA	NA	NA
3-NITROANILINE	30 U	30 U	NA	NA	NA	NA	NA	NA	NA
4,6-DINITRO-2-METHYLPHENOL	45 U	45 U	NA	NA	NA	NA	NA	NA	NA
4-AMINOBIPHENYL	10 U	10 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
4-BROMOPHENYL PHENYL ETHER	15 U	15 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLORO-3-METHYLPHENOL	3 U	3 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
4-CHLOROANILINE	5 U	5 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-CHLOROPHENYL PHENYL ETHER	10 U	10 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-METHYLPHENOL	35 U	35 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROANILINE	35 U	35 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL	12 U	12 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-NITROPHENOL 4-NITROQUINOLINE-1-OXIDE	75 U	75 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
5-NITRO-O-TOLUIDINE	30 U	30 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
7,12-DIMETHYLBENZ(A)ANTHRACENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA

Table B1-3
Surface Water Sample Analytical Data
SWMU 23 - Battery Shop Building 36
NSA Crane, Crane, Indiana
Page 4 of 6

LOCATION	23/00-012	23/00-014	23SW	/SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006
SAMPLE ID	23/00-012	23/00-014	23SW001	23SW001-D	23SW002	23SW003	23SW004	23SW005	23SW006
SAMPLE DATE	19960222	19960222	20121008	20121008	20121008	20121008	20121008	20121008	20121008
SAMPLE CODE	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SW	SW	SW	SW	SW	SW	SW	SW	SW
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	NA	NA NA	SW	SW	SW	SW	SW	SW	SW
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
ACENAPHTHENE	10 U	10 U	-9999 NA	-9999 NA	-9999 NA	NA	NA	NA	-9999 NA
ACENAPHTHICNE ACENAPHTHYLENE	10 U	10 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACETOPHENONE	20 U	20 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ACRYLONITRILE	95 U	300 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANILINE	15 U	15 U			NA NA				
	15 U	15 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ANTHRACENE								NA NA	
ARAMITE PACENE	20 U	20 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(A)ANTHRACENE	10 U	10 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(B)FLUORANTHENE	10 U	10 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(G,H,I)PERYLENE	10 U	10 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BENZO(K)FLUORANTHENE	20 U	20 U	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA
BENZYL ALCOHOL	20 U	20 U	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
BIS(2-CHLOROETHOXY)METHANE	15 U	15 U	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
BIS(2-CHLOROETHYL)ETHER	4 U	4 U	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
BIS(2-CHLOROISOPROPYL)ETHER	15 U	15 U	NA	NA NA	NA	NA	NA	NA	NA
BIS(2-ETHYLHEXYL)PHTHALATE	1 J	25 U	NA	NA	NA	NA	NA	NA	NA
BUTYL BENZYL PHTHALATE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
CHLOROBENZILATE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
CHRYSENE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
DIALLATE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
DIBENZO(A,H)ANTHRACENE	5 U	5 U	NA	NA	NA	NA	NA	NA	NA
DIBENZOFURAN	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
DIETHYL PHTHALATE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
DIMETHYL PHTHALATE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
DI-N-BUTYL PHTHALATE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
DI-N-OCTYL PHTHALATE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
DIPHENYLAMINE	30 U	30 U	NA	NA	NA	NA	NA	NA	NA
ETHYL METHANE SULFONATE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
FLUORANTHENE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
FLUORENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROBENZENE	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROBUTADIENE	5 U	5 U	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROCYCLOPENTADIENE	25 U	25 U	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROETHANE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
HEXACHLOROPROPENE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
INDENO(1,2,3-CD)PYRENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
ISODRIN	15 U	15 U	NA	NA	NA	NA	NA	NA	NA
ISOPHORONE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
ISOSAFROLE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
METHAPYRILENE	30 U	30 U	NA	NA	NA	NA	NA	NA	NA
METHYL METHANE SULFONATE	20 U	20 U	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	5 U	5 U	NA	NA	NA	NA	NA	NA	NA
NITROBENZENE	10 U	10 U	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIETHYLAMINE	3 U	3 U	NA	NA	NA	NA	NA	NA	NA
N-NITROSODIMETHYLAMINE	5 U	5 U	NA	NA	NA	NA	NA	NA	NA

Table B1-3
Surface Water Sample Analytical Data
SWMU 23 - Battery Shop Building 36
NSA Crane, Crane, Indiana
Page 5 of 6

ICATION 23/00-012 23/00-014 235W/50004 235W/50004 235W/50006 235W/500					1 456 3 01					
SOFFICE D	LOCATION	23/00-012	23/00-014	23SW/	SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006
SOMPLE DIF 1996/222 1996/222 1996/222 20121008 20121008 NORMAL NORMA	SAMPLE ID			23SW001	23SW001-D				-	
SOMPLE CODE NORMAL NORMA										
MATRIX SW NORMAL NORMA										
SOMPLE NORMAL N										
SUBMATRIX NA										
100 PEPTH										
NATIOSO OF HEADTY AND 3 U										
NATISOSO-DI-NEMENCAL AND NA										
NATESOSOPHENYLAMINE 30 U 30 U 10 NA NA NA NA NA NA NA NA										
NAME NAME										
NATISOSOMOSPHOLINE										
NETTROSOPPERIDITE										
NNTROSPYRRQUIDNE										
0.0.D-TRIETHYL PHOSPHOROTHICATE 110 U										
POMENTIAL AND CARRENTENE 10 U 10 U NA NA NA NA NA NA NA										
PENTACHLOROPHENOL 15 U 10 U NA NA NA NA NA NA NA										
PENTACHIOROPHENOL 55 U S5 U NA NA NA NA NA NA NA										
PHENACTEIN 20 U 20 U NA NA NA NA NA NA NA NA NA NA NA NA NA										
PHENDER 15 U										
PHENOL										
PROMABIDE										
PYREDNE										
PYRIDINE							* ** *			
SAFROLE S U S U S U NA NA NA NA NA NA NA										
NA										
1,1,1,2-TETRACHLOROETHANE		5 0	5 0	NA NA	INA	NA NA	NA NA	NA NA	NA NA	INA
1.1.1-TRICHLOROFIHANE		10.11	24.11	N/A	NIA.	N/A	N/A	N/A	NIA.	NIA
1.1.2.2-TETRACHLORGETHANE										
1.1_2 FRICHLOROETHANE										
1.1-DICHLOROETHANE										
1.1-DICHLOROFITHENE										
1,2,3-THICHLOROPROPANE										
1,2-DIBROMO-3-CHLOROPROPANE 10 U 5 U NA NA NA NA NA NA NA NA NA NA NA NA NA										
1,2-DIBROMOETHANE										
1,2-DICHLOROETHANE 10 U 31 U NA<										
1,2-DICHLOROPROPANE 10 U 31 U NA							* ** *			
1,4-DIOXANE 3700 U 12000 U NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
2-BUTANONE 10 U 31 U NA										
2-HEXANONE 10 U 31 U NA NA NA NA NA NA NA NA NA NA NA NA NA										
3-CHLOROPROPENE 15 U 47 U NA NA NA NA NA NA NA NA NA NA NA NA NA										
4-METHYL-2-PENTANONE 10 U 31 U NA N										
ACETONE 10 U 31 U NA										
ACETONITRILE 60 U 190 U NA										
ACROLEIN 90 U 280 U NA										
BENZENE 10 U 31 U NA										
BROMODICHLOROMETHANE 10 U 31 U NA N										
BROMOFORM 10 U 31 U NA										
BROMOMETHANE 10 U 31 U NA				NA		NA			NA	
CARBON DISULFIDE 10 U 31 U NA NA NA NA NA NA NA NA NA NA NA NA NA				NA					NA	
CARBON TETRACHLORIDE 10 U 31 U NA NA NA NA NA NA NA NA	BROMOMETHANE			NA				NA	NA	
	CARBON DISULFIDE			NA					NA	
CHLOROBENZENE 10 U 31 U NA NA NA NA NA NA NA	CARBON TETRACHLORIDE			NA				NA	NA	NA
	CHLOROBENZENE			NA	NA	NA	NA	NA	NA	NA

Table B1-3
Surface Water Sample Analytical Data
SWMU 23 - Battery Shop Building 36
NSA Crane, Crane, Indiana
Page 6 of 6

LOCATION	23/00-012	23/00-014	23SW	/SD001	23SW/SD002	23SW/SD003	23SW/SD004	23SW/SD005	23SW/SD006
SAMPLE ID	23/00-012	23/00-014	23SW001	23SW001-D	23SW002	23SW003	23SW004	23SW005	23SW006
SAMPLE DATE	19960222	19960222	20121008	20121008	20121008	20121008	20121008	20121008	20121008
SAMPLE CODE	NORMAL	NORMAL	NORMAL	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
MATRIX	SW	SW	SW	SW	SW	SW	SW	SW	SW
SAMPLE TYPE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
SUBMATRIX	NA	NA	SW	SW	SW	SW	SW	SW	sw
TOP DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
BOTTOM DEPTH	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999	-9999
CHLORODIBROMOMETHANE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
CHLOROETHANE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
CHLOROFORM	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
CHLOROMETHANE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
CIS-1,3-DICHLOROPROPENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
DIBROMOMETHANE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
DICHLORODIFLUOROMETHANE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
ETHYLBENZENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
ISOBUTANOL	2800 U	8800 U	NA	NA	NA	NA	NA	NA	NA
METHACRYLONITRILE	20 U	62 U	NA	NA	NA	NA	NA	NA	NA
METHYL IODIDE	5 U	16 U	NA	NA	NA	NA	NA	NA	NA
METHYL METHACRYLATE	20 U	62 U	NA	NA	NA	NA	NA	NA	NA
METHYLENE CHLORIDE	1 J	8 J	NA	NA	NA	NA	NA	NA	NA
PROPIONITRILE	220 U	690 U	NA	NA	NA	NA	NA	NA	NA
STYRENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
TETRACHLOROETHENE	10 U	4 J	NA	NA	NA	NA	NA	NA	NA
TOLUENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
TOTAL XYLENES	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
TRANS-1,2-DICHLOROETHENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
TRANS-1,3-DICHLOROPROPENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
TRANS-1,4-DICHLORO-2-BUTENE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
TRICHLOROETHENE	65	460	NA	NA	NA	NA	NA	NA	NA
TRICHLOROFLUOROMETHANE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
VINYL ACETATE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA
VINYL CHLORIDE	10 U	31 U	NA	NA	NA	NA	NA	NA	NA

B.2	HUMAN HEALTH AND ECOLOGICAL RISK SUMMARIES

APPENDIX B.2

HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT DISCUSSIONS

HUMAN HEALTH RISK ASSESSMENT

During the development of the draft RFI Report, a Human Health Risk Assessment (HHRA) was completed for those samples initially collected under the approved UFP-SAP. The objective of the HHRA is to determine whether detected concentrations of chemicals within the study area pose a significant threat to potential human receptors under current and/or future land use. The potential risks to human receptors were estimated based on the assumption that no actions were taken to control contaminant releases.

Potential receptors under current and future land use are industrial workers, construction workers, and trespassers. Potential receptors under future land use are child and adult recreational users, and hypothetical child and adult residents. Although future land use is likely to be the same as current land use, the potential future receptors were evaluated in the baseline HHRA, primarily for decision-making purposes.

Quantitative estimates of noncarcinogenic and carcinogenic risks (HIs and ILCRs, respectively) were developed for potential human receptors. Cumulative HIs for all receptors under the RME and CTE scenarios were less than or equal to unity (1), indicating that adverse non-carcinogenic effects are not anticipated for these receptors under the defined exposure conditions.

Cumulative ILCRs for all receptors with the exception of hypothetical child and lifelong residents were less than or within USEPA's and IDEM's target risk range of 10⁻⁴ to 10⁻⁶. The ILCRs for hypothetical child and lifelong residents exposed to surface soil exceeded USEPA's and IDEM's target risk range. Carcinogenic PAHs, arsenic, and chromium were the major contributors to the ILCRs for these receptors, and are therefore chemicals of concern (COC). However, chromium speciation was not performed on the soil samples; therefore, chromium was evaluated as hexavalent chromium in this HHRA. If chromium had been evaluated as trivalent chromium then chromium would not be a contributor to the ILCRs for the hypothetical child and lifelong residents.

Cumulative ILCRs for all receptors under the CTE scenario were within USEPA's and IDEM's target risk range.

Lead was identified as a COPC in surface soil at SWMU 23. Hypothetical residential exposures to lead in surface soil were evaluated using USEPA's IEUBK lead model. Risks to construction workers, industrial workers, and adult recreational users exposed to lead in surface soil were evaluated using USEPA's

Adult Lead Model. Results of the analysis conducted for these receptors do not exceed the EPA goal regarding lead exposures [i.e., no more than 5 percent of children (or fetuses of exposed woman) having blood-lead levels exceeding a 10 µg/L blood-lead level].

While the results of the IEUBK and TRW lead models are within USEPA acceptable levels, concentrations of lead in two samples (23SS014-0002: 4,640 mg/kg; and 23SS017-002: 1,920 mg/kg) exceeded the OSWER and IDEM screening level by four times or more. Therefore, lead was retained as a chemical of concern at locations 23SB014 and 23SB017.

Table 2-2 from the draft RFI Report HHRA is presented in this appendix and shows the cancer risks, hazards, critical pathways and chemicals of concern, and recommendations for those samples collected under the approved UFP-SAP.

ECOLOGICAL RISK ASSESSMENT

During the development of the draft RFI Report, an Ecological Risk Assessment (ERA) was completed for those samples initially collected under the approved UFP-SAP. The objective of the ERA is to evaluate the potential for adverse ecological impacts resulting from site-related contamination. This objective was accomplished by identifying COPCs detected at concentrations that exceed screening levels, identifying the locations of these exceedances, and concluding whether or not further investigation and/or remedial action at SWMU 23 is warranted from an ecological perspective.

This ERA consists of Steps 1, 2, and 3a of the eight-step ecological risk evaluation process discussed in USEPA guidance (1997c and 1998) and the Navy Policy for Conducting ERAs (1999). The first two screening steps comprise the SLERA and correspond with Tier 1 of the Navy policy (1999), during which conservative exposure estimates are compared to screening-level and threshold toxicity values. Step 3a is the first step of a baseline ecological risk assessment (BERA) and consists of refining the Tier 1 assumptions following Steps 1 and 2 to further focus the ERA process on the chemicals of greatest concern at a site. Step 3a corresponds with the first part of Tier 2 of the Navy policy (1999). Steps 3b through 7 are conducted if additional evaluations or investigations are necessary. Aspects of Step 8, risk management, are addressed throughout the ERA process, in cooperation with Region 5 regulators.

Many receptors in the terrestrial/aquatic environment at SWMU 23 are typically grouped into general categories such as invertebrates and vegetation. This is a reflection of the nature of the threshold values, effects values, or criteria typically used to characterize risk for such organisms. However, for vertebrate receptors, the selection of representative species is required so that risks to these upper-level species incurred by intake through eating and drinking can be estimated. Food chain models are used to estimate the intake.

Ingestion is the primary route of exposure for most mammals and birds. The selection of species used to represent these receptor groups was based on considerations of their preferred habitat, body size, sensitivity to contaminants, home range, abundance, commercial or sport utilization, legal status, and functional role (e.g., predators). The availability of exposure parameters such as body mass, feeding rate, and drinking rate was also a factor in selecting surrogate species.

This ERA evaluated surface soil, sediment, and surface water. Based on the initial screening of the chemical data, several chemicals were initially selected as COPCs in surface soil, sediment, and surface water because they were detected at concentrations that exceeded conservative screening levels, they had EEQs greater than 1.0 in the conservative food-chain model, or because they did not have screening levels. These chemicals were then further evaluated to refine the list of COPCs, and to better characterize risks to ecological receptors.

Lead was the only metal retained as a COPC for plants. The two samples collected in the debris removal area have lead concentrations many times greater than the plant screening level, so risks to plants in this area cannot be ruled out. Impacts to plants in the other areas are less likely because the concentrations are not much greater than the conservative screening level and/or the areas are well bounded. However, because the portion of the site with maximum lead concentrations is vegetated, there is uncertainty in whether plants are being significantly impacted.

No chemicals were retained as COPCs for risks to soil invertebrates or for risks to sediment invertebrates or aquatic organisms.

No chemicals were retained as COPCs for mammals and birds. Although the EEQs for lead and mercury were greater than 1.0 based on the LOAEL, the high EEQs are being driven by two samples for lead and mercury. The high lead EEQ is being driven by two samples in the debris removal area, but these two samples only represent a very small portion of the 4.3 acre vegetated area. Similarly, the two greatest mercury detections were in samples collected within the gravel-covered portion of the site where there would be minimal ecological exposure. For these reasons, impacts to invertivorous receptors are expected to be minimal.

Table 2-2 from the draft RFI Report ERA is presented in this appendix and shows the cancer risks, hazards, critical pathways and chemicals of concern, and recommendations for those samples collected under the approved UFP-SAP.

TABLE 2-2
SUMMARY OF RECEPTOR-SPECIFIC HUMAN HEALTH RISKS AND HAZARDS, ECOLOGICAL RISKS, AND RECOMMENDATIONS SWMU 23

NSA CRANE CRANE, INDIANA PAGE 1 OF 3

Receptor Population	Environmental Medium	Overall Carcinogenic Risk (Human)	Overall Hazard Index (Human)	Lead Exposure (Human)	Overall Risk (Ecological)	Critical Pathways and Chemicals of Concern	Recommendations
Construction Workers (future land use)	Surface Soil	4E-06	0.1		NA	NA	NFA
Industrial Workers (current and future land use)	Surface Soil	2E-05	0.05		NA	NA	NFA
Adolescent Trespasser (current and future land use)	Surface Soil	3E-06	0.008		NA	NA	NFA
Small Child (0 to 6 years) Recreational User (future land use)	Surface Soil	2E-05	0.05	Site-wide exposure is acceptable but two	NA	NA	NFA
Adult Recreational User (future land use)	Surface Soil	4E-06	0.006	significant hot spots exist: 23SB014 and 23SB017	NA	NA	NFA
Lifelong Recreational User (future land use)	Surface Soil	2E-05	NA		NA	NA	NFA
On-base Residents (Children) (future land use)	Surface Soil	2E-04	0.06		NA	Ingestion of soil (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene), arsenic ⁽¹⁾ , and chromium ⁽²⁾	Proceed to CMS or Interim Measures
On-base Residents (Adult) (future land use)	Surface Soil	4E-05	0.07		NA	NA	NFA
On-base Residents (Lifelong) (future land use)	Surface Soil	2E-04	NA		NA	Ingestion of soil (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene) arsenic ⁽¹⁾ , and chromium ⁽²⁾	Proceed to CMS or Interim Measures
Construction Workers (future land use)	Subsurface Soil	4E-07	0.1		NA	NA	NFA
Industrial Workers (current and future land use)	Subsurface Soil	4E-06	0.03		NA	NA	NFA
Adolescent Trespasser (current and future land use)	Subsurface Soil	3E-07	0.004		NA	NA	NFA

TABLE 2-2

SUMMARY OF RECEPTOR-SPECIFIC HUMAN HEALTH RISKS AND HAZARDS, ECOLOGICAL RISKS, AND RECOMMENDATIONS
SWMU 23
NSA CRANE
CRANE, INDIANA

PAGE 2 OF 3

Receptor Population	Environmental Medium	Overall Carcinogenic Risk (Human)	Overall Hazard Index (Human)	Lead Exposure (Human)	Overall Risk (Ecological)	Critical Pathways and Chemicals of Concern	Recommendations
Small Child (0 to 6 years) Recreational User (future land use)	Subsurface Soil	1E-06	0.02		NA	NA	NFA
Adult Recreational User (future land use)	Suburface Soil	6E-07	0.003		NA	NA	NFA
Lifelong Recreational User (future land use)	Suburface Soil	2E-06	NA		NA	NA	NFA
On-base Residents (Children) (future land use)	Subsurface Soil	1E-05	0.3		NA	NA	NFA
On-base Residents (Adult) (future land use)	Subsurface Soil	6E-06	0.03		NA	NA	NFA
On-base Residents (Lifelong) (future land use)	Subsurface Soil	2E-05	NA		NA	NA	NFA
Adolescent Trespasser (current and future land use)	Surface Water	1E-06	0.003		NA	NA	NFA
Small Child (0 to 6 years) Recreational User (future land use)	Surface Water	4E-06	0.02		NA	NA	NFA
Adult Recreational User (future land use)	Surface Water	3E-06	0.005	No unacceptable exposures to lead.	NA	NA	NFA
Lifelong Recreational User (future land use)	Surface Water	7E-06	NA		NA	NA	NFA
On-base Residents (Children) (future land use)	Surface Water	4E-06	0.02		NA	NA	NFA
On-base Residents (Adult) (future land use)	Surface Water	3E-06	0.005		NA	NA	NFA
On-base Residents (Lifelong) (future land use)	Surface Water	7E-06	NA		NA	NA	NFA
Adolescent Trespasser (current and future land use)	Sediment	5E-07	0.01		NA	NA	NFA

TABLE 2-2

SUMMARY OF RECEPTOR-SPECIFIC HUMAN HEALTH RISKS AND HAZARDS, ECOLOGICAL RISKS, AND RECOMMENDATIONS

SWMU 23 **NSA CRANE** CRANE, INDIANA PAGE 3 OF 3

Receptor Population	Environmental Medium	Overall Carcinogenic Risk (Human)	Overall Hazard Index (Human)	Lead Exposure (Human)	Overall Risk (Ecological)	Critical Pathways and Chemicals of Concern	Recommendations
Small Child (0 to 6 years) Recreational User (future land use)	Sediment	9E-06	0.2		NA	NA	NFA
Adult Recreational User (future land use)	Sediment	3E-07	0.0009		NA	NA	NFA
Lifelong Recreational User (future land use)	Sediment	1E-05	NA		NA	NA	NFA
On-base Residents (Children) (future land use)	Sediment	9E-06	0.2		NA	NA	NFA
On-base Residents (Adult) (future land use)	Sediment	2E-06	0.02		NA	NA	NFA
On-base Residents (Lifelong) (future land use)	Sediment	1E-05	NA		NA	NA	NFA
Terrestrial Plants and Invertebrates	Surface Soil	NA	NA	NA	Unacceptable	Lead was retained as a COPC for plants. Two samples collected in the Former Debris Disposal Area have lead concentrations many times greater than the plant screening level. No chemicals were retained as COPCs for soil invertebrates.	Proceed to CMS or Interim Measures
Mammals and Birds	Surface Soil	NA	NA	NA	Unacceptable	Lead was retained as a COPC for invertivorous birds. Risk to invertivorous birds is driven by two samples in the Former Debris Disposal Area. However, these two samples only represent a very small portion of the 4.3 acre vegetated area. No other chemicals were retained as COPCs for mammals and herbivorous birds.	Proceed to CMS or Interim Measures

NA = Not applicable. NFA = No further action.

CMS = Corrective Measures Study.

COPC = Chemical of potential concern.

(1) - arsenic is attributed to background soil concentrations

(2) - chromium is expected to exist in the less toxic trivalent state at the site

APPENDIX C

SUPPLEMENTAL CONTRACTOR SPECIFICATIONS

SUPPLEMENTAL SPECIFICATIONS INTERIM MEASURES WORK PLAN SWMU 23 - BATTERY SHOP BUILDING 36 **NSA CRANE** CRANE, INDIANA

Contractor Requirements

The Contractor will be responsible for performing the following work:

- 1. Attend pre-Interim Measures Work Plan (IMWP) implementation meeting.
- 2. Submit documentation in accordance with the "Basic Contract" 30 days prior to beginning work to allow the Navy sufficient time to review and comment. The Contractor will then incorporate Navy comments into the documents. These documents include the following:
 - Work Plan
 - Excavation and Handling Plan
 - Specific steps for how contaminated soil will be removed from each excavation area and eventually placed in trucks/roll-offs for off-site disposal).
 - ✓ Details regarding decontamination requirements/procedures
 - ✓ Lead stabilization procedures (e.g., pad construction details, waste pile management, specifics on treatment including specific amendments, mixing process, process duration, pre- and poststabilization testing procedures, etc.).
 - Hazardous/Waste Management Plan
 - Environmental Protection Plan
 - o Erosion and Sediment Control Plan
 - Stormwater Pollution Prevention Plan
 - Transportation and Disposal Plan
 - Site Specific Health and Safety Plan (SSHSP) and Activity Hazard Analysis
 - Project Quality Control Plan (QCP)
- 3. Acquire Facility-specific permits, including but not limited to the following:
 - Safety & Building Availability Permit (ESO 8020/11)
 - Digging Permit (NWSCC 11000/3)
 - Hot Work Permit
- 4. Mobilize required equipment and personnel to excavate the indicated contaminated soil.
- 5. Construct and maintain the required erosion and sediment control devices for the duration of the
- 6. Construct required support facilities including, but not limited to, dewatering pad, decontamination pad(s), and material storage areas.
- 7. Excavate, transport, and dispose lead and polycyclic aromatic hydrocarbon (PAH)-contaminated
- 8. Restore surface soil excavation area to meet surrounding grades.
- 9. Remove all temporary support facilities, leaving perimeter erosion and sediment controls in place until revegetation is permanently stabilized and as instructed by the Navy.
- 10. Restore areas used for temporary support facilities (regrading and revegetation).
- 11. Demobilize equipment and personnel.

In addition to the Quality Control (QC) submittals and Safety and Health submittals required by the NSA Crane Contractor's Operations Manual and the Basic Contract, the Contractor shall submit the following to the Navy:

- Fieldwork reports in accordance with Part 6.4 Section C of the Basic Contract.
- Contractor 29 Code of Federal Regulation (CFR) 1910.120 Employee Training Certificates for all Contractor employees scheduled to be on-site.

C-1 CTO F272

- Erosion and Sediment (E&S) Control installation and inspection logs.
- Copies of NSA Crane specific permits.
- Certification and sampling results for backfill material and topsoil. The need for backfill should be kept to a minimum, especially for raised areas that were already higher than the surrounding grade. A minimum of one sample per borrow source is required.
- Waste transportation subcontractor name, address, contact name, telephone number, and United States Department of Transportation (USDOT) number.
- Hazardous waste disposal facility name, address, contact name, telephone number, and United States Environmental Protection Agency (USEPA) and State identification numbers, if required.
- Solid waste disposal facility name, address, contact name, telephone number, USEPA and State identification numbers.
- Waste profiles, complete waste characterization results, and any waste disposal facility pre-approval or approval documentation.
- Shipment Manifests (manifests and other documents required to ship waste).
- Delivery Certificates (verification that waste was received at identified waste disposal facility).
- Treatment and Disposal Certificates (verification that waste was successfully received and disposed).
- Decontamination Log.

The Contractor-provided information will be compiled in the project Contract Task Order (CTO) Closure Report to be prepared by the Navy.

Supplemental Specifications

In addition to the performance specifications presented in the NSA Crane Contractor's Operation Manual and in the Basic Contract, the Contractor shall perform the activities in accordance with the supplemental specifications provided below.

General Requirements

The Contractor is advised that this project is subject to Federal, State, and local regulatory agency inspections and review for compliance with environmental laws and regulations. The Contractor shall fully cooperate with any representative from any Federal, State, or local regulatory agency who may visit the job site and shall provide immediate notification to the Officer in Charge of Construction (OICC), who shall accompany them on any subsequent site inspections. The Contractor shall complete, maintain, and make available to the OICC, Facility, or regulatory agency personnel all documentation relating to environmental compliance under applicable Federal, State, and local laws and regulations. The Contractor shall immediately notify the OICC if a Notice of Violation (NOV), Notice of Deficiency (NOD), or similar regulatory notice is issued to the Contractor.

The Contractor shall be responsible for all damages to persons or property resulting from Contractor fault or negligence as well as for the payment of any civil fines or penalties which may be assessed by any Federal, State, or local regulatory agency as a result of the Contractor's or any subcontractor's violation of an applicable Federal, State, or local environmental law or regulation. Should an NOV, Notice of Noncompliance, NOD, or similar regulatory agency notice be issued to the Government or Facility owner/operator on account of the actions or inactions of the Contractor or one if its subcontractors in the performance of work under this contract, the Contractor shall fully cooperate with the Government in defending against regulatory assessment of any civil fines or penalties arising out of such actions or inactions.

After approval of the Contractor's Work Plan and before commencement of the work, the Contractor shall submit to the OICC the required certifications. As requested by the OICC, the Navy Representative for

C-2 CTO F272

this project may review and provide surveillance for the OICC to determine if Contractor's submittals comply with the contract requirements.

The Contractor shall be required to commence work on the approved Contractor's Work Plan within 5-calendar days after receiving the notice to proceed and to prosecute the work diligently after receiving the notice to proceed.

NSA Crane will remain in operation during the entire construction period. The Contractor shall schedule the work as to cause the least amount of interference with the Facility. Work schedules shall be subject to the approval of the OICC. Permission to interrupt Facility road services shall be requested in writing a minimum of 15-calendar days prior to the desired date of interruption. The OICC shall be notified two weeks prior to starting excavation activities.

Regular work hours shall consist of an 8½ hour daily period established by the OICC, Monday through Friday, excluding Government holidays. The Contractor should assume an 8½ hour daily period. Working outside of the 8½ hour daily period will require approval by the OICC. Work hours shall be established during the pre-IMWP implementation meeting.

On-site storage, laydown, material handling, and decontamination activities shall be limited to areas approved by the OICC.

During the progress of construction activities, the work area and adjacent areas shall be kept clean and free of rubbish, surplus materials, and unneeded construction equipment. No material or debris shall be allowed to flow or wash into watercourses, ditches, gutters, drains, or pipes. Upon completion of the work, the Contractor shall sweep paved areas and rake clean landscaped areas, and remove waste and surplus materials, rubbish, and construction facilities from the site.

Work Restrictions

Contractor personnel working on the Facility shall become familiar with and obey Facility regulations and keep within the limits of the work and avenues of ingress and egress as directed. Personnel shall not enter any restricted areas unless required to do so and until cleared for such entry. The Contractor's equipment shall be clearly marked for identification.

The Contractor shall indicate on the construction schedule any activity that could potentially interrupt Facility operations. The Contractor shall notify the OICC in writing 15-calendar days prior to the required interruption.

Facilities and Services

Provide utility permits in accordance with Part 4.13 Section C of the Basic Contract.

NSA Crane shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as indicated. The amount of each utility service consumed shall be charged to or paid for by the Contractor at the prevailing rates charged to NSA Crane or shall be furnished at no charge as indicated. The Contractor shall carefully conserve any utilities furnished without charge.

The point at which NSA Crane will deliver such utilities or services and the quantity available will be identified by NSA Crane.

The Contractor, at its expense and in a workman-like manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of each utility used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.

C-3 CTO F272

Electric – Electrical power available, primary voltage is [2400 volt 3 phase, 3 wire, 60 cycle AC. Secondary voltages may be 120/208 or 120/240 volts.] Final taps and tie-ins to the NSA Crane utility grid will be made by NSA Crane electric shop.

Potable Water – Potable water is available at B-3245. Contractor shall provide potable water for use by all personnel.

Water – A reasonable quantity of water is available at NSA Crane at the Building 3245 at no charge. Provide backflow prevention devices on connections to potable water supplies. Under no circumstances will taps to NSA Crane fire hydrants be allowed for obtaining water.

Telephone – Telephone service is not available.

Sanitary Facilities - Provide temporary sanitary facilities for use by all personnel in accordance with Part 3.10 Section C of the Basic Contract.

Municipal Waste – Municipal waste storage and disposal is not available.

Sewer – Water resulting from personnel and equipment decontamination, excavation dewatering, and water from materials handling pad will be containerized for off-site disposal by the contractor.

Site Personnel Qualifications

Site Superintendent - The Contractor shall designate a Site Superintendent who shall have responsibility and authority to direct work performed. The Site Superintendent shall be responsible for the management and execution of all site activities in accordance with the IMWP, approved Contractor's Work Plan, and all Federal, State, and local laws and regulations. The Site Superintendent may <u>not</u> act in the dual role as the Project Quality Control Manager or Site Health and Safety Specialist (SHSS). The Site Superintendent shall have, as a minimum, the following qualifications:

- A minimum of 6-years site superintendent experience.
- Familiar with the requirements of the U.S. Army Corps of Engineers Safety Safety and Health Requirements (EM 385-1-1).
- Experience in the areas of hazard identification and safety compliance.

Project Quality Control Manager - The Contractor shall designate a Project QC Manager who shall assist and represent the QC Program Manager in continued implementation and enforcement of the approved Project QC Plan. The QC Program Manager or Project QC Manager shall be physically present at the project site whenever work is in progress. The Project QC Manager may be dual hatted with the SHSS if qualified. The Project QC Manager shall have, as a minimum, the following qualifications:

- A minimum 2-years experience as a Project QC Manager.
- A minimum of 10-years combined experience in the following positions: project superintendent, QC manager, project manager, project engineer or construction manager on similar size and type of construction contracts which included the major trades that are part of this IM.
- Alternatively, the above 10-year combined experience requirement may be satisfied by providing a professional engineer registered in the State of Indiana having at least 2-years experience as a Project QC Manager.
- Familiar with the requirements of the U.S. Army Corps of Engineers Safety Safety and Health Requirements (EM 385-1-1).
- Experience in the areas of hazard identification and safety compliance.

Site Health and Safety Specialist - The Contractor shall designate a Site Health and Safety Specialist (SHSS) who shall assist and represent the Contractor's Health and Safety (H&S) Manager in continued implementation and enforcement of the approved Site Health and Safety Plan (SSHSP). The SHSS shall have the on-site responsibility and authority to modify and stop work, or remove personnel from the site if working conditions change that may affect on-site and off-site health and safety. The SHSS shall be

C-4 CTO F272

physically present at the project site at all times. The SHSS may be dual hatted with the Project QC Manager. The SHSS shall have, as a minimum, the following qualifications:

- A minimum of 5-years safety work on similar projects.
- 30-hour OSHA construction safety class or equivalent within the last 5-years.
- An average of at least 24 hours of formal safety training each year for the last 5-years.
- Competent person status for at least the following:
 - o excavation,
 - health hazard recognition, evaluation and control of chemical, physical and biological agents, and
 - o personal protective equipment and clothing to include selection, use and maintenance.
- First aid and cardiopulmonary resuscitation qualified.

Quality Control

Approval of the QC Plan is required prior to the start of construction. The OICC reserves the right to require changes in the QC Plan and operations as necessary to ensure the specified quality of work. The Contracting Officer reserves the right to interview the QC Manager at any time in order to verify his/her submitted qualifications.

The OICC shall be notified, in writing, of any proposed changes to the QC Plan, at a minimum of 7-calendar days prior to the implementation of the proposed change. Proposed changes must be approved by the OICC.

Combined Contractor Production Report/Contractor Quality Control Report (CPR/CQCR) is required for each day that work is performed. CPR/CQCRs are to be prepared, signed, and dated by the Project QC Manager.

Safety and Occupational Health Requirements

The SHSS and Contractor representatives who have a responsibility or significant role in accident prevention shall attend the pre-IMWP implementation meeting. The purpose of the meeting is for the Contractor and the OICC to become acquainted and explain the functions and operating procedures of their respective organizations and to reach mutual understanding relative to the administration of the overall project before the initiation of work. The Contractor shall discuss the details of the work identified in the approved Contractor's Work Plan and discuss which construction phases will require significant or additional activity hazard analysis. In addition, a schedule for the preparation, submittal, review, and acceptance of additional hazard analysis shall be established to preclude project delays. Lastly, deficiencies in the submitted accident prevention report will be brought to the attention of the Contractor at the meeting. The Contractor shall revise the plan to correct deficiencies and resubmit the plan for acceptance.

New employees (prime or subcontractor) will be informed of specific site hazards before they begin work. Documentation of this orientation shall be kept on file at the project site.

If unforeseen materials hazardous to human health are encountered during operations, then that portion of the work shall be stopped and the OICC shall be notified immediately. Within 14-days, the Navy will determine if the material is hazardous. If the material is not hazardous or poses no danger, the OICC will direct the Contractor to proceed without change. If the material is determined to be hazardous or to pose danger, and handling of the material is necessary to accomplish the work, the Contracting Officer will issue modifications to the proposed work.

Equipment shall be operated by designated qualified operators. Proof of qualifications shall be kept on the project site for review. Manufacturer's specifications or owner's manual for the equipment shall be on site and reviewed for additional safety precautions or requirements. Such additional safety precautions or requirements shall be incorporated into the activity hazard analysis. Mechanized equipment shall be inspected in accordance with manufacturer's recommendations for safe operations by a competent

C-5 CTO F272

person prior to being placed into use. Daily checks or tests shall be conducted and documented on mechanized equipment by designated competent persons.

The competent person for excavations performed as a result of contract work shall be on-site when excavation work is being performed, and shall inspect and document the excavations daily prior to entry by workers. The competent person must evaluate all hazards, including atmospheric, that may be associated with the work, and shall have the resources necessary to correct hazards promptly.

Environmental Controls

The need for an E&S Control Plan is included in the IMWP. The E&S Control Plan will describe the location and description of all erosion and sediment control measures, a sequence of construction to be followed, graphic details of all E&S control measures to be used, and an approval sign-off block containing the names of the Facility and Contractor contacts, whose signatures indicate plan acceptance/approval.

The Contractor shall adhere to and strictly follow the E&S Control Plan and maintain all measures used during construction. Modifications to the E&S Control Plan shall be submitted to the OICC, and as required, to the Indiana Department of Environmental Management (IDEM) for approval. No modifications to the E&S Control Plan will be allowed until these changes have been approved by the OICC and IDEM and three copies of the approved modifications have been submitted to the OICC and one copy of the approved modifications have been submitted to IDEM.

Transportation and Disposal of Contaminated Material

The Contractor shall be solely responsible for complying with all Federal, State, and local requirements for decontamination of vehicles, equipment, and containers and shall bear all responsibility and cost for any noncompliance. In addition to these requirements, the Contractor shall perform the following:

- Visually inspect all vehicles, equipment, and containers leaving the work site for proper decontamination.
- Prepare and maintain a written decontamination log.

The Contractor shall be solely responsible for complying with all Federal, State, and local requirements for transporting contaminated materials through the applicable jurisdictions and shall bear all responsibility and cost for any noncompliance. In addition to these requirements, the Contractor shall perform the following:

- Inspect and document all vehicles and containers for proper operation and covering.
- Inspect all vehicles and containers for proper markings, manifest documents, and other requirements for waste shipment.

All contaminated materials removed from the site shall be disposed in a treatment/disposal facility permitted to accept such material.

The Contractor shall properly dispose of Investigation-Derived Waste (IDW), personnel protective equipment, and miscellaneous wastes associated with implementation of the IMWP, including sampling and analytical wastes that are generated by the contractor or Navy representatives.

C-6 CTO F272